基于遗传算法的多核处理器热感知任务分配

Mohammed Parwez, D. R. Sulaiman
{"title":"基于遗传算法的多核处理器热感知任务分配","authors":"Mohammed Parwez, D. R. Sulaiman","doi":"10.11591/ijece.v13i5.pp5253-5264","DOIUrl":null,"url":null,"abstract":"Microprocessor power and thermal density are increasing exponentially. The reliability of the processor declined, cooling costs rose, and the processor's lifespan was shortened due to an overheated processor and poor thermal management like thermally unbalanced processors. Thus, the thermal management and balancing of multi-core processors are extremely crucial. This work mostly focuses on a compact temperature model of multicore processors. In this paper, a novel task assignment is proposed using a genetic algorithm to maintain the thermal balance of the cores, by considering the energy expended by each task that the core performs. And expecting the cores’ temperature using the hotspot simulator. The algorithm assigns tasks to the processors depending on the task parameters and current cores’ temperature in such a way that none of the tasks’ deadlines are lost for the earliest deadline first (EDF) scheduling algorithm. The mathematical model was derived, and the simulation results showed that the highest temperature difference between the cores is 8 °C for approximately 14 seconds of simulation. These results validate the effectiveness of the proposed algorithm in managing the hotspot and reducing both temperature and energy consumption in multicore processors.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal aware task assignment for multicore processors using genetic algorithm\",\"authors\":\"Mohammed Parwez, D. R. Sulaiman\",\"doi\":\"10.11591/ijece.v13i5.pp5253-5264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microprocessor power and thermal density are increasing exponentially. The reliability of the processor declined, cooling costs rose, and the processor's lifespan was shortened due to an overheated processor and poor thermal management like thermally unbalanced processors. Thus, the thermal management and balancing of multi-core processors are extremely crucial. This work mostly focuses on a compact temperature model of multicore processors. In this paper, a novel task assignment is proposed using a genetic algorithm to maintain the thermal balance of the cores, by considering the energy expended by each task that the core performs. And expecting the cores’ temperature using the hotspot simulator. The algorithm assigns tasks to the processors depending on the task parameters and current cores’ temperature in such a way that none of the tasks’ deadlines are lost for the earliest deadline first (EDF) scheduling algorithm. The mathematical model was derived, and the simulation results showed that the highest temperature difference between the cores is 8 °C for approximately 14 seconds of simulation. These results validate the effectiveness of the proposed algorithm in managing the hotspot and reducing both temperature and energy consumption in multicore processors.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5253-5264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5253-5264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

微处理器的功率和热密度呈指数级增长。处理器的可靠性下降,冷却成本上升,由于过热的处理器和热不平衡处理器等热管理不善,处理器的寿命缩短。因此,多核处理器的热管理和平衡至关重要。这项工作主要集中在多核处理器的紧凑温度模型上。在本文中,通过考虑堆芯执行的每个任务所消耗的能量,使用遗传算法提出了一种新的任务分配方法,以保持堆芯的热平衡。并使用热点模拟器来预期堆芯的温度。该算法根据任务参数和当前内核的温度将任务分配给处理器,使得最早截止日期优先(EDF)调度算法不会丢失任务的截止日期。推导了数学模型,模拟结果表明,在大约14秒的模拟过程中,堆芯之间的最高温差为8°C。这些结果验证了所提出的算法在管理热点以及降低多核处理器的温度和能耗方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal aware task assignment for multicore processors using genetic algorithm
Microprocessor power and thermal density are increasing exponentially. The reliability of the processor declined, cooling costs rose, and the processor's lifespan was shortened due to an overheated processor and poor thermal management like thermally unbalanced processors. Thus, the thermal management and balancing of multi-core processors are extremely crucial. This work mostly focuses on a compact temperature model of multicore processors. In this paper, a novel task assignment is proposed using a genetic algorithm to maintain the thermal balance of the cores, by considering the energy expended by each task that the core performs. And expecting the cores’ temperature using the hotspot simulator. The algorithm assigns tasks to the processors depending on the task parameters and current cores’ temperature in such a way that none of the tasks’ deadlines are lost for the earliest deadline first (EDF) scheduling algorithm. The mathematical model was derived, and the simulation results showed that the highest temperature difference between the cores is 8 °C for approximately 14 seconds of simulation. These results validate the effectiveness of the proposed algorithm in managing the hotspot and reducing both temperature and energy consumption in multicore processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1