工件夹紧位置非线性接触动力学的检测与识别

Q2 Engineering Journal of Machine Engineering Pub Date : 2023-03-03 DOI:10.36897/jme/161718
Qi Feng, W. Maier, Steffen Braun, H. Möhring
{"title":"工件夹紧位置非线性接触动力学的检测与识别","authors":"Qi Feng, W. Maier, Steffen Braun, H. Möhring","doi":"10.36897/jme/161718","DOIUrl":null,"url":null,"abstract":"All mechanical systems behave nonlinearly to a certain extent since there are always reasons for nonlinearities, such as friction and slip effects, in the actual structures. It is important to detect and identify the nonlinearity due to friction and contact in order to investigate their effect on the global behavior of the workpiece-fixture system. That is a prerequisite for modeling the dynamic contact behavior at the interface between the workpiece and clamping elements. In this research, the workpiece-fixture system was excited with a shaker using the swept sine signal. The nonlinearities could be detected by comparing and analyzing the frequency responses of the structures in Bode plots. However, the nonlinearities behaved differently at various frequencies within the observation range. Different mechanisms such as nonlinear stiffness and damping, micro-slip friction, are responsible for that. Then the nonlinear contact behavior at the clamping positions was successfully identified by means of the Hilbert transform. In addition, the clamping force directly influenced the nonlinear stiffness of the workpiece-fixture system.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Identification of Nonlinear Contact Dynamics at Workpiece Clamping Positions\",\"authors\":\"Qi Feng, W. Maier, Steffen Braun, H. Möhring\",\"doi\":\"10.36897/jme/161718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All mechanical systems behave nonlinearly to a certain extent since there are always reasons for nonlinearities, such as friction and slip effects, in the actual structures. It is important to detect and identify the nonlinearity due to friction and contact in order to investigate their effect on the global behavior of the workpiece-fixture system. That is a prerequisite for modeling the dynamic contact behavior at the interface between the workpiece and clamping elements. In this research, the workpiece-fixture system was excited with a shaker using the swept sine signal. The nonlinearities could be detected by comparing and analyzing the frequency responses of the structures in Bode plots. However, the nonlinearities behaved differently at various frequencies within the observation range. Different mechanisms such as nonlinear stiffness and damping, micro-slip friction, are responsible for that. Then the nonlinear contact behavior at the clamping positions was successfully identified by means of the Hilbert transform. In addition, the clamping force directly influenced the nonlinear stiffness of the workpiece-fixture system.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/161718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/161718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

所有的机械系统都在一定程度上表现为非线性,因为在实际结构中总是存在非线性的原因,例如摩擦和滑移效应。为了研究摩擦和接触对工件夹具系统全局行为的影响,检测和识别摩擦和接触引起的非线性是很重要的。这是对工件和夹紧元件之间的界面处的动态接触行为进行建模的先决条件。在本研究中,利用正弦扫频信号,用振动台对工件夹具系统进行激励。通过比较和分析Bode图中结构的频率响应,可以检测出非线性。然而,在观测范围内的不同频率下,非线性表现不同。不同的机制,如非线性刚度和阻尼,微滑动摩擦,是造成这种情况的原因。然后利用希尔伯特变换成功地识别了夹持位置的非线性接触行为。此外,夹紧力直接影响工件夹具系统的非线性刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Identification of Nonlinear Contact Dynamics at Workpiece Clamping Positions
All mechanical systems behave nonlinearly to a certain extent since there are always reasons for nonlinearities, such as friction and slip effects, in the actual structures. It is important to detect and identify the nonlinearity due to friction and contact in order to investigate their effect on the global behavior of the workpiece-fixture system. That is a prerequisite for modeling the dynamic contact behavior at the interface between the workpiece and clamping elements. In this research, the workpiece-fixture system was excited with a shaker using the swept sine signal. The nonlinearities could be detected by comparing and analyzing the frequency responses of the structures in Bode plots. However, the nonlinearities behaved differently at various frequencies within the observation range. Different mechanisms such as nonlinear stiffness and damping, micro-slip friction, are responsible for that. Then the nonlinear contact behavior at the clamping positions was successfully identified by means of the Hilbert transform. In addition, the clamping force directly influenced the nonlinear stiffness of the workpiece-fixture system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1