P. Bhatt, M. Tiwari, Prasoon Parmarick, Kalpana Bhatt, S. Gangola, Muhammad Adnan, Yashpal Singh, M. Bilal, Shakeel Ahmed, Shaohua Chen
{"title":"木质素分解过氧化物酶和漆酶对木质素降解的催化机理探讨","authors":"P. Bhatt, M. Tiwari, Prasoon Parmarick, Kalpana Bhatt, S. Gangola, Muhammad Adnan, Yashpal Singh, M. Bilal, Shakeel Ahmed, Shaohua Chen","doi":"10.1080/10889868.2021.1973951","DOIUrl":null,"url":null,"abstract":"Abstract The present study aimed to give insights into the binding interactions of the laccases and peroxidase for the degradation of the lignin. The active site of the applied enzymes contains the amino acids that are playing an essential role in lignin degradation. The binding pocket amino acids have interacted with the lignin via the hydrogen, alkyl and van der Waal bonds. The mutagenesis in the active sites of these enzymes predicted the increasing and decreasing performance of the lignin-degrading enzymes. Ramachandran plot analysis of the Laccase and peroxidases determined the active conformation of the lignin-degrading enzymes. Phylogenetic study of the Laccase, lignin peroxidase, versatile peroxidase and manganese peroxidase suggested each of the enzymes belong to the separate protein cluster. The present study reveals the binding potential of the various lignin-degrading enzymes that could increase our understanding of the application of plant biomass large scales.","PeriodicalId":8935,"journal":{"name":"Bioremediation Journal","volume":"26 1","pages":"281 - 291"},"PeriodicalIF":1.9000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Insights into the catalytic mechanism of ligninolytic peroxidase and laccase in lignin degradation\",\"authors\":\"P. Bhatt, M. Tiwari, Prasoon Parmarick, Kalpana Bhatt, S. Gangola, Muhammad Adnan, Yashpal Singh, M. Bilal, Shakeel Ahmed, Shaohua Chen\",\"doi\":\"10.1080/10889868.2021.1973951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present study aimed to give insights into the binding interactions of the laccases and peroxidase for the degradation of the lignin. The active site of the applied enzymes contains the amino acids that are playing an essential role in lignin degradation. The binding pocket amino acids have interacted with the lignin via the hydrogen, alkyl and van der Waal bonds. The mutagenesis in the active sites of these enzymes predicted the increasing and decreasing performance of the lignin-degrading enzymes. Ramachandran plot analysis of the Laccase and peroxidases determined the active conformation of the lignin-degrading enzymes. Phylogenetic study of the Laccase, lignin peroxidase, versatile peroxidase and manganese peroxidase suggested each of the enzymes belong to the separate protein cluster. The present study reveals the binding potential of the various lignin-degrading enzymes that could increase our understanding of the application of plant biomass large scales.\",\"PeriodicalId\":8935,\"journal\":{\"name\":\"Bioremediation Journal\",\"volume\":\"26 1\",\"pages\":\"281 - 291\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioremediation Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10889868.2021.1973951\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10889868.2021.1973951","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Insights into the catalytic mechanism of ligninolytic peroxidase and laccase in lignin degradation
Abstract The present study aimed to give insights into the binding interactions of the laccases and peroxidase for the degradation of the lignin. The active site of the applied enzymes contains the amino acids that are playing an essential role in lignin degradation. The binding pocket amino acids have interacted with the lignin via the hydrogen, alkyl and van der Waal bonds. The mutagenesis in the active sites of these enzymes predicted the increasing and decreasing performance of the lignin-degrading enzymes. Ramachandran plot analysis of the Laccase and peroxidases determined the active conformation of the lignin-degrading enzymes. Phylogenetic study of the Laccase, lignin peroxidase, versatile peroxidase and manganese peroxidase suggested each of the enzymes belong to the separate protein cluster. The present study reveals the binding potential of the various lignin-degrading enzymes that could increase our understanding of the application of plant biomass large scales.
期刊介绍:
Bioremediation Journal is a peer-reviewed quarterly that publishes current, original laboratory and field research in bioremediation, the use of biological and supporting physical treatments to treat contaminated soil and groundwater. The journal rapidly disseminates new information on emerging and maturing bioremediation technologies and integrates scientific research and engineering practices. The authors, editors, and readers are scientists, field engineers, site remediation managers, and regulatory experts from the academic, industrial, and government sectors worldwide.
High-quality, original articles make up the primary content. Other contributions are technical notes, short communications, and occasional invited review articles.