Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang, Jun Cheng
{"title":"α相在β型生物钛合金断裂行为和断裂韧性中的新作用","authors":"Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang, Jun Cheng","doi":"10.1007/s12613-023-2635-4","DOIUrl":null,"url":null,"abstract":"<div><p>The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr (TNTZ) was studied. Results showed that the fracture toughness of the TNTZ alloy aged at 723 K decreases to the minimum of 72.07–73.19 kJ·m<sup>−2</sup> when the aging time is extended to 4–8 h and then gradually increases and reaches 144.89 kJ·m<sup>−2</sup> after 72 h. The decrease in fracture toughness within the aging time of 4–8 h is caused by the large stress concentration at the tip of acicular a precipitates with a high aspect ratio and the preferential crack propagation along the inhomogeneous acicular a precipitates distributed in “V-shape” and “nearly perpendicular shape”. When the aging time is extended to 8–72 h, the precrack tip is uniformly blunted, and the crack is effectively deflected by a precipitates with multi long axis directions, more high homogeneity, low aspect ratio, and large number density. Analysis of the effect of a precipitates on the fracture behavior suggested that the number of long axis directions of a precipitates is the key controlling factor for the fracture behavior and fracture toughness of the TNTZ alloy aged for different times.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 9","pages":"1756 - 1763"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy\",\"authors\":\"Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang, Jun Cheng\",\"doi\":\"10.1007/s12613-023-2635-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr (TNTZ) was studied. Results showed that the fracture toughness of the TNTZ alloy aged at 723 K decreases to the minimum of 72.07–73.19 kJ·m<sup>−2</sup> when the aging time is extended to 4–8 h and then gradually increases and reaches 144.89 kJ·m<sup>−2</sup> after 72 h. The decrease in fracture toughness within the aging time of 4–8 h is caused by the large stress concentration at the tip of acicular a precipitates with a high aspect ratio and the preferential crack propagation along the inhomogeneous acicular a precipitates distributed in “V-shape” and “nearly perpendicular shape”. When the aging time is extended to 8–72 h, the precrack tip is uniformly blunted, and the crack is effectively deflected by a precipitates with multi long axis directions, more high homogeneity, low aspect ratio, and large number density. Analysis of the effect of a precipitates on the fracture behavior suggested that the number of long axis directions of a precipitates is the key controlling factor for the fracture behavior and fracture toughness of the TNTZ alloy aged for different times.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 9\",\"pages\":\"1756 - 1763\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2635-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2635-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy
The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr (TNTZ) was studied. Results showed that the fracture toughness of the TNTZ alloy aged at 723 K decreases to the minimum of 72.07–73.19 kJ·m−2 when the aging time is extended to 4–8 h and then gradually increases and reaches 144.89 kJ·m−2 after 72 h. The decrease in fracture toughness within the aging time of 4–8 h is caused by the large stress concentration at the tip of acicular a precipitates with a high aspect ratio and the preferential crack propagation along the inhomogeneous acicular a precipitates distributed in “V-shape” and “nearly perpendicular shape”. When the aging time is extended to 8–72 h, the precrack tip is uniformly blunted, and the crack is effectively deflected by a precipitates with multi long axis directions, more high homogeneity, low aspect ratio, and large number density. Analysis of the effect of a precipitates on the fracture behavior suggested that the number of long axis directions of a precipitates is the key controlling factor for the fracture behavior and fracture toughness of the TNTZ alloy aged for different times.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.