{"title":"添加生物炭和有机改良剂对土壤团聚体粒径分布和团聚体内总有机碳的影响","authors":"George O. Odugbenro, Zhihua Liu, Yankun Sun","doi":"10.17951/pjss.2020.53.1.41","DOIUrl":null,"url":null,"abstract":"A two-year field trial on maize ( Zea mays L.) production was established to determine the influence of biochar, maize straw, and poultry manure on soil aggregate stability, aggregate size distribution, total organic carbon (TOC), and soil microbial biomass carbon (MBC). Seven treatments with four replications, namely CK, control; S, 12.5 Mg ha-1 straw; B1, 12.5 Mg ha-1 biochar; B2, 25 Mg ha-1 biochar; SB1, straw + 12.5 Mg ha-1 biochar; SB2, straw + 25 Mg ha-1 biochar; and M, 25 Mg ha-1 manure were tested at four soil depths (0–10, 10–20, 20–30, and 30–40 cm). Aggregates were grouped into large macro-aggregates (5–2 mm), small macro-aggregates (2–0.25 mm), micro-aggregates (0.25–0.053 mm) and silt + clay (<0.053 mm). Biochar, straw, and manure applications all had significant effects ( p < 0.05) on aggregate stability, with B 2 at 20 cm soil depth showing the greatest increase (62.1%). SB 1 of small macro-aggregate fraction showed the highest aggregate proportion (50.59% ± 10.48) at the 20–30 cm soil depth. The highest TOC was observed in SB 2 (40.9 g kg -1 ) of large macro-aggregate at 10–20 cm soil depth. Treatment effects on soil MBC was high, with B 1 showing the greatest value (600.0 µg g -1 ) at the 20–30 cm soil depth. Our results showed that application of biochar, straw, and manure to soil increased aggregate stability, TOC as well as MBC.","PeriodicalId":20295,"journal":{"name":"Polish Journal of Soil Science","volume":"53 1","pages":"41"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Soil aggregate size distribution and total organic carbon in intra-aggregate fractions as affected by addition of biochar and organic amendments\",\"authors\":\"George O. Odugbenro, Zhihua Liu, Yankun Sun\",\"doi\":\"10.17951/pjss.2020.53.1.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-year field trial on maize ( Zea mays L.) production was established to determine the influence of biochar, maize straw, and poultry manure on soil aggregate stability, aggregate size distribution, total organic carbon (TOC), and soil microbial biomass carbon (MBC). Seven treatments with four replications, namely CK, control; S, 12.5 Mg ha-1 straw; B1, 12.5 Mg ha-1 biochar; B2, 25 Mg ha-1 biochar; SB1, straw + 12.5 Mg ha-1 biochar; SB2, straw + 25 Mg ha-1 biochar; and M, 25 Mg ha-1 manure were tested at four soil depths (0–10, 10–20, 20–30, and 30–40 cm). Aggregates were grouped into large macro-aggregates (5–2 mm), small macro-aggregates (2–0.25 mm), micro-aggregates (0.25–0.053 mm) and silt + clay (<0.053 mm). Biochar, straw, and manure applications all had significant effects ( p < 0.05) on aggregate stability, with B 2 at 20 cm soil depth showing the greatest increase (62.1%). SB 1 of small macro-aggregate fraction showed the highest aggregate proportion (50.59% ± 10.48) at the 20–30 cm soil depth. The highest TOC was observed in SB 2 (40.9 g kg -1 ) of large macro-aggregate at 10–20 cm soil depth. Treatment effects on soil MBC was high, with B 1 showing the greatest value (600.0 µg g -1 ) at the 20–30 cm soil depth. Our results showed that application of biochar, straw, and manure to soil increased aggregate stability, TOC as well as MBC.\",\"PeriodicalId\":20295,\"journal\":{\"name\":\"Polish Journal of Soil Science\",\"volume\":\"53 1\",\"pages\":\"41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17951/pjss.2020.53.1.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17951/pjss.2020.53.1.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Soil aggregate size distribution and total organic carbon in intra-aggregate fractions as affected by addition of biochar and organic amendments
A two-year field trial on maize ( Zea mays L.) production was established to determine the influence of biochar, maize straw, and poultry manure on soil aggregate stability, aggregate size distribution, total organic carbon (TOC), and soil microbial biomass carbon (MBC). Seven treatments with four replications, namely CK, control; S, 12.5 Mg ha-1 straw; B1, 12.5 Mg ha-1 biochar; B2, 25 Mg ha-1 biochar; SB1, straw + 12.5 Mg ha-1 biochar; SB2, straw + 25 Mg ha-1 biochar; and M, 25 Mg ha-1 manure were tested at four soil depths (0–10, 10–20, 20–30, and 30–40 cm). Aggregates were grouped into large macro-aggregates (5–2 mm), small macro-aggregates (2–0.25 mm), micro-aggregates (0.25–0.053 mm) and silt + clay (<0.053 mm). Biochar, straw, and manure applications all had significant effects ( p < 0.05) on aggregate stability, with B 2 at 20 cm soil depth showing the greatest increase (62.1%). SB 1 of small macro-aggregate fraction showed the highest aggregate proportion (50.59% ± 10.48) at the 20–30 cm soil depth. The highest TOC was observed in SB 2 (40.9 g kg -1 ) of large macro-aggregate at 10–20 cm soil depth. Treatment effects on soil MBC was high, with B 1 showing the greatest value (600.0 µg g -1 ) at the 20–30 cm soil depth. Our results showed that application of biochar, straw, and manure to soil increased aggregate stability, TOC as well as MBC.
期刊介绍:
The Journal focuses mainly on all issues of soil sciences, agricultural chemistry, soil technology and protection and soil environmental functions. Papers concerning various aspects of functioning of the environment (including geochemistry, geomophology, geoecology etc.) as well as new techniques of surveing, especially remote sensing, are also published.