{"title":"无约束倾斜气流水平靶冷却的温度分析","authors":"S. Ingole","doi":"10.18186/thermal.1283386","DOIUrl":null,"url":null,"abstract":"In jet impingement cooling applications, the inclined jet in non-confined condition; also called as submerged jet is experimentally investigated. The objective is to analyze for hot surface cooling applications. Air is used as the working fluid, by using placement of jet on the leading edge of a horizontal rectangular target plate at height H, and examined for downhill side comprehensive cooling performance approach. The jet Reynolds number in the range of 2000 ≤ Re ≤ 20000 is investigated with circular jet for inclination of 15° ≤ θa ≤ 75°. The effect of jet to target distance (H) is also investigated in the range 0.5 ≤ H⁄D ≤ 6.8. The temperature variation at the center line of target is studied with analysis of temperature profile. Its variation with respective to horizontal distance of jet from leading edge (X) and counters are plotted for jet diameter (D) of 16mm. The location of minimum temperature during cooling by jet impingement, goes to downhill side for jet impingement with an angle of 75, 60, 45, 30 and 15°. Cooling is observed to be increase up to X⁄D = 5, and then it declines. The cold spot is seen at (X⁄D) of around 5 to 7 except at high Reynolds number. The impact of jet inclination is more on temperature variation of flat target, compared to other parameters.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature analysis for the horizontal target cooling with non-confined and inclined air jet\",\"authors\":\"S. Ingole\",\"doi\":\"10.18186/thermal.1283386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In jet impingement cooling applications, the inclined jet in non-confined condition; also called as submerged jet is experimentally investigated. The objective is to analyze for hot surface cooling applications. Air is used as the working fluid, by using placement of jet on the leading edge of a horizontal rectangular target plate at height H, and examined for downhill side comprehensive cooling performance approach. The jet Reynolds number in the range of 2000 ≤ Re ≤ 20000 is investigated with circular jet for inclination of 15° ≤ θa ≤ 75°. The effect of jet to target distance (H) is also investigated in the range 0.5 ≤ H⁄D ≤ 6.8. The temperature variation at the center line of target is studied with analysis of temperature profile. Its variation with respective to horizontal distance of jet from leading edge (X) and counters are plotted for jet diameter (D) of 16mm. The location of minimum temperature during cooling by jet impingement, goes to downhill side for jet impingement with an angle of 75, 60, 45, 30 and 15°. Cooling is observed to be increase up to X⁄D = 5, and then it declines. The cold spot is seen at (X⁄D) of around 5 to 7 except at high Reynolds number. The impact of jet inclination is more on temperature variation of flat target, compared to other parameters.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1283386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1283386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Temperature analysis for the horizontal target cooling with non-confined and inclined air jet
In jet impingement cooling applications, the inclined jet in non-confined condition; also called as submerged jet is experimentally investigated. The objective is to analyze for hot surface cooling applications. Air is used as the working fluid, by using placement of jet on the leading edge of a horizontal rectangular target plate at height H, and examined for downhill side comprehensive cooling performance approach. The jet Reynolds number in the range of 2000 ≤ Re ≤ 20000 is investigated with circular jet for inclination of 15° ≤ θa ≤ 75°. The effect of jet to target distance (H) is also investigated in the range 0.5 ≤ H⁄D ≤ 6.8. The temperature variation at the center line of target is studied with analysis of temperature profile. Its variation with respective to horizontal distance of jet from leading edge (X) and counters are plotted for jet diameter (D) of 16mm. The location of minimum temperature during cooling by jet impingement, goes to downhill side for jet impingement with an angle of 75, 60, 45, 30 and 15°. Cooling is observed to be increase up to X⁄D = 5, and then it declines. The cold spot is seen at (X⁄D) of around 5 to 7 except at high Reynolds number. The impact of jet inclination is more on temperature variation of flat target, compared to other parameters.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.