{"title":"具有变离散度的二元混合泊松回归模型","authors":"G. Tzougas, Alice Pignatelli di Cerchiara","doi":"10.1080/10920277.2021.1978850","DOIUrl":null,"url":null,"abstract":"The main purpose of this article is to present a new class of bivariate mixed Poisson regression models with varying dispersion that offers sufficient flexibility for accommodating overdispersion and accounting for the positive correlation between the number of claims from third-party liability bodily injury and property damage. Maximum likelihood estimation for this family of models is achieved through an expectation-maximization algorithm that is shown to have a satisfactory performance when three members of this family, namely, the bivariate negative binomial, bivariate Poisson–inverse Gaussian, and bivariate Poisson–Lognormal distributions with regression specifications on every parameter are fitted on two-dimensional motor insurance data from a European motor insurer. The a posteriori, or bonus-malus, premium rates that are determined by these models are calculated via the expected value and variance principles and are compared to those based only on the a posteriori criteria. Finally, we present an extension of the proposed approach with varying dispersion by developing a bivariate Normal copula-based mixed Poisson regression model with varying dispersion and dependence parameters. This approach allows us to consider the influence of individual and coverage-specific risk factors on the mean, dispersion, and copula parameters when modeling different types of claims from different types of coverage. For expository purposes, the Normal copula paired with negative binomial distributions for marginals and regressors on the mean, dispersion, and copula parameters is fitted on a simulated dataset via maximum likelihood.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bivariate Mixed Poisson Regression Models with Varying Dispersion\",\"authors\":\"G. Tzougas, Alice Pignatelli di Cerchiara\",\"doi\":\"10.1080/10920277.2021.1978850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this article is to present a new class of bivariate mixed Poisson regression models with varying dispersion that offers sufficient flexibility for accommodating overdispersion and accounting for the positive correlation between the number of claims from third-party liability bodily injury and property damage. Maximum likelihood estimation for this family of models is achieved through an expectation-maximization algorithm that is shown to have a satisfactory performance when three members of this family, namely, the bivariate negative binomial, bivariate Poisson–inverse Gaussian, and bivariate Poisson–Lognormal distributions with regression specifications on every parameter are fitted on two-dimensional motor insurance data from a European motor insurer. The a posteriori, or bonus-malus, premium rates that are determined by these models are calculated via the expected value and variance principles and are compared to those based only on the a posteriori criteria. Finally, we present an extension of the proposed approach with varying dispersion by developing a bivariate Normal copula-based mixed Poisson regression model with varying dispersion and dependence parameters. This approach allows us to consider the influence of individual and coverage-specific risk factors on the mean, dispersion, and copula parameters when modeling different types of claims from different types of coverage. For expository purposes, the Normal copula paired with negative binomial distributions for marginals and regressors on the mean, dispersion, and copula parameters is fitted on a simulated dataset via maximum likelihood.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2021.1978850\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2021.1978850","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bivariate Mixed Poisson Regression Models with Varying Dispersion
The main purpose of this article is to present a new class of bivariate mixed Poisson regression models with varying dispersion that offers sufficient flexibility for accommodating overdispersion and accounting for the positive correlation between the number of claims from third-party liability bodily injury and property damage. Maximum likelihood estimation for this family of models is achieved through an expectation-maximization algorithm that is shown to have a satisfactory performance when three members of this family, namely, the bivariate negative binomial, bivariate Poisson–inverse Gaussian, and bivariate Poisson–Lognormal distributions with regression specifications on every parameter are fitted on two-dimensional motor insurance data from a European motor insurer. The a posteriori, or bonus-malus, premium rates that are determined by these models are calculated via the expected value and variance principles and are compared to those based only on the a posteriori criteria. Finally, we present an extension of the proposed approach with varying dispersion by developing a bivariate Normal copula-based mixed Poisson regression model with varying dispersion and dependence parameters. This approach allows us to consider the influence of individual and coverage-specific risk factors on the mean, dispersion, and copula parameters when modeling different types of claims from different types of coverage. For expository purposes, the Normal copula paired with negative binomial distributions for marginals and regressors on the mean, dispersion, and copula parameters is fitted on a simulated dataset via maximum likelihood.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.