Rosinah M Mukhodobwane, C. Sigauke, Wilbert Chagwiza, W. Garira
{"title":"金砖国家股票市场的波动性模型","authors":"Rosinah M Mukhodobwane, C. Sigauke, Wilbert Chagwiza, W. Garira","doi":"10.19139/soic-2310-5070-977","DOIUrl":null,"url":null,"abstract":"Volatility modelling is a key factor in equity markets for risk and portfolio management. This paper focuses on the use of a univariate generalized autoregressive conditional heteroscedasticity (GARCH) models for modelling volatility of the BRICS (Brazil, Russia, India, China and South Africa) stock markets. The study extends the literature by conducting the volatility modelling under the assumptions of seven error distributions that include the normal, skewed-normal, Student’s t, skewed-Student’s t, generalized error distribution (GED), skewed-GED and the generalized hyperbolic (GHYP) distribution. It was observed that using an ARMA(1, 1)-GARCH(1, 1) model, volatilities of the Brazilian Bovespa and the Russian IMOEX markets can both be well characterized (or described) by a heavy-tailed Student’s t distribution, while the Indian NIFTY market’s volatility is best characterized by the generalized hyperbolic (GHYP) distribution. Also, the Chinese SHCOMP and South African JALSH markets’ volatilities are best described by the skew-GED and skew-Student’s t distribution, respectively. The study further observed that the persistence of volatility in the BRICS markets does not follow the same hierarchical pattern under the error distributions, except under the skew-Student’s t and GHYP distributions where the pattern is the same. Under these two assumptions, i.e. the skew-Student’s t and GHYP, in a descending hierarchical order of magnitudes, volatility with persistence is highest in the Chinese market, followed by the South African market, then the Russian, Indian and Brazilian markets, respectively. However, under each of the five non-Gaussian error distributions, the Chinese market is the most volatile, while the least volatile is the Brazilian market.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"749-772"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Volatility Modelling of the BRICS Stock Markets\",\"authors\":\"Rosinah M Mukhodobwane, C. Sigauke, Wilbert Chagwiza, W. Garira\",\"doi\":\"10.19139/soic-2310-5070-977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volatility modelling is a key factor in equity markets for risk and portfolio management. This paper focuses on the use of a univariate generalized autoregressive conditional heteroscedasticity (GARCH) models for modelling volatility of the BRICS (Brazil, Russia, India, China and South Africa) stock markets. The study extends the literature by conducting the volatility modelling under the assumptions of seven error distributions that include the normal, skewed-normal, Student’s t, skewed-Student’s t, generalized error distribution (GED), skewed-GED and the generalized hyperbolic (GHYP) distribution. It was observed that using an ARMA(1, 1)-GARCH(1, 1) model, volatilities of the Brazilian Bovespa and the Russian IMOEX markets can both be well characterized (or described) by a heavy-tailed Student’s t distribution, while the Indian NIFTY market’s volatility is best characterized by the generalized hyperbolic (GHYP) distribution. Also, the Chinese SHCOMP and South African JALSH markets’ volatilities are best described by the skew-GED and skew-Student’s t distribution, respectively. The study further observed that the persistence of volatility in the BRICS markets does not follow the same hierarchical pattern under the error distributions, except under the skew-Student’s t and GHYP distributions where the pattern is the same. Under these two assumptions, i.e. the skew-Student’s t and GHYP, in a descending hierarchical order of magnitudes, volatility with persistence is highest in the Chinese market, followed by the South African market, then the Russian, Indian and Brazilian markets, respectively. However, under each of the five non-Gaussian error distributions, the Chinese market is the most volatile, while the least volatile is the Brazilian market.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"749-772\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Volatility modelling is a key factor in equity markets for risk and portfolio management. This paper focuses on the use of a univariate generalized autoregressive conditional heteroscedasticity (GARCH) models for modelling volatility of the BRICS (Brazil, Russia, India, China and South Africa) stock markets. The study extends the literature by conducting the volatility modelling under the assumptions of seven error distributions that include the normal, skewed-normal, Student’s t, skewed-Student’s t, generalized error distribution (GED), skewed-GED and the generalized hyperbolic (GHYP) distribution. It was observed that using an ARMA(1, 1)-GARCH(1, 1) model, volatilities of the Brazilian Bovespa and the Russian IMOEX markets can both be well characterized (or described) by a heavy-tailed Student’s t distribution, while the Indian NIFTY market’s volatility is best characterized by the generalized hyperbolic (GHYP) distribution. Also, the Chinese SHCOMP and South African JALSH markets’ volatilities are best described by the skew-GED and skew-Student’s t distribution, respectively. The study further observed that the persistence of volatility in the BRICS markets does not follow the same hierarchical pattern under the error distributions, except under the skew-Student’s t and GHYP distributions where the pattern is the same. Under these two assumptions, i.e. the skew-Student’s t and GHYP, in a descending hierarchical order of magnitudes, volatility with persistence is highest in the Chinese market, followed by the South African market, then the Russian, Indian and Brazilian markets, respectively. However, under each of the five non-Gaussian error distributions, the Chinese market is the most volatile, while the least volatile is the Brazilian market.