金砖国家股票市场的波动性模型

Rosinah M Mukhodobwane, C. Sigauke, Wilbert Chagwiza, W. Garira
{"title":"金砖国家股票市场的波动性模型","authors":"Rosinah M Mukhodobwane, C. Sigauke, Wilbert Chagwiza, W. Garira","doi":"10.19139/soic-2310-5070-977","DOIUrl":null,"url":null,"abstract":"Volatility modelling is a key factor in equity markets for risk and portfolio management. This paper focuses on the use of a univariate generalized autoregressive conditional heteroscedasticity (GARCH) models for modelling volatility of the BRICS (Brazil, Russia, India, China and South Africa) stock markets. The study extends the literature by conducting the volatility modelling under the assumptions of seven error distributions that include the normal, skewed-normal, Student’s t, skewed-Student’s t, generalized error distribution (GED), skewed-GED and the generalized hyperbolic (GHYP) distribution. It was observed that using an ARMA(1, 1)-GARCH(1, 1) model, volatilities of the Brazilian Bovespa and the Russian IMOEX markets can both be well characterized (or described) by a heavy-tailed Student’s t distribution, while the Indian NIFTY market’s volatility is best characterized by the generalized hyperbolic (GHYP) distribution. Also, the Chinese SHCOMP and South African JALSH markets’ volatilities are best described by the skew-GED and skew-Student’s t distribution, respectively. The study further observed that the persistence of volatility in the BRICS markets does not follow the same hierarchical pattern under the error distributions, except under the skew-Student’s t and GHYP distributions where the pattern is the same. Under these two assumptions, i.e. the skew-Student’s t and GHYP, in a descending hierarchical order of magnitudes, volatility with persistence is highest in the Chinese market, followed by the South African market, then the Russian, Indian and Brazilian markets, respectively. However, under each of the five non-Gaussian error distributions, the Chinese market is the most volatile, while the least volatile is the Brazilian market.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"749-772"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Volatility Modelling of the BRICS Stock Markets\",\"authors\":\"Rosinah M Mukhodobwane, C. Sigauke, Wilbert Chagwiza, W. Garira\",\"doi\":\"10.19139/soic-2310-5070-977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volatility modelling is a key factor in equity markets for risk and portfolio management. This paper focuses on the use of a univariate generalized autoregressive conditional heteroscedasticity (GARCH) models for modelling volatility of the BRICS (Brazil, Russia, India, China and South Africa) stock markets. The study extends the literature by conducting the volatility modelling under the assumptions of seven error distributions that include the normal, skewed-normal, Student’s t, skewed-Student’s t, generalized error distribution (GED), skewed-GED and the generalized hyperbolic (GHYP) distribution. It was observed that using an ARMA(1, 1)-GARCH(1, 1) model, volatilities of the Brazilian Bovespa and the Russian IMOEX markets can both be well characterized (or described) by a heavy-tailed Student’s t distribution, while the Indian NIFTY market’s volatility is best characterized by the generalized hyperbolic (GHYP) distribution. Also, the Chinese SHCOMP and South African JALSH markets’ volatilities are best described by the skew-GED and skew-Student’s t distribution, respectively. The study further observed that the persistence of volatility in the BRICS markets does not follow the same hierarchical pattern under the error distributions, except under the skew-Student’s t and GHYP distributions where the pattern is the same. Under these two assumptions, i.e. the skew-Student’s t and GHYP, in a descending hierarchical order of magnitudes, volatility with persistence is highest in the Chinese market, followed by the South African market, then the Russian, Indian and Brazilian markets, respectively. However, under each of the five non-Gaussian error distributions, the Chinese market is the most volatile, while the least volatile is the Brazilian market.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"749-772\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

波动性建模是股票市场风险和投资组合管理的一个关键因素。本文重点研究了单变量广义自回归条件异方差(GARCH)模型对金砖国家(巴西、俄罗斯、印度、中国和南非)股市波动性的建模。该研究通过在七个误差分布的假设下进行波动率建模来扩展文献,这些误差分布包括正态、偏态、学生t、偏态学生t、广义误差分布(GED)、偏态GED和广义双曲(GHYP)分布。研究发现,使用ARMA(1,1)-GARCH(1,2)模型,巴西Bovespa和俄罗斯IMOEX市场的波动率都可以用重尾Student’s t分布来很好地表征(或描述),而印度NIFTY市场的波动性最好用广义双曲(GHYP)分布来表征。此外,中国上证综合指数和南非日线市场的波动性最好分别用偏斜的GED和偏斜的Student t分布来描述。该研究进一步观察到,在误差分布下,金砖国家市场波动的持续性并不遵循相同的层次模式,但在偏斜的Student’s t和GHYP分布下,模式是相同的。在这两个假设下,即偏斜的Student’s t和GHYP,按降序排列,中国市场的持续波动性最高,其次是南非市场,然后分别是俄罗斯、印度和巴西市场。然而,在五种非高斯误差分布下,中国市场波动性最大,而巴西市场波动性最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Volatility Modelling of the BRICS Stock Markets
Volatility modelling is a key factor in equity markets for risk and portfolio management. This paper focuses on the use of a univariate generalized autoregressive conditional heteroscedasticity (GARCH) models for modelling volatility of the BRICS (Brazil, Russia, India, China and South Africa) stock markets. The study extends the literature by conducting the volatility modelling under the assumptions of seven error distributions that include the normal, skewed-normal, Student’s t, skewed-Student’s t, generalized error distribution (GED), skewed-GED and the generalized hyperbolic (GHYP) distribution. It was observed that using an ARMA(1, 1)-GARCH(1, 1) model, volatilities of the Brazilian Bovespa and the Russian IMOEX markets can both be well characterized (or described) by a heavy-tailed Student’s t distribution, while the Indian NIFTY market’s volatility is best characterized by the generalized hyperbolic (GHYP) distribution. Also, the Chinese SHCOMP and South African JALSH markets’ volatilities are best described by the skew-GED and skew-Student’s t distribution, respectively. The study further observed that the persistence of volatility in the BRICS markets does not follow the same hierarchical pattern under the error distributions, except under the skew-Student’s t and GHYP distributions where the pattern is the same. Under these two assumptions, i.e. the skew-Student’s t and GHYP, in a descending hierarchical order of magnitudes, volatility with persistence is highest in the Chinese market, followed by the South African market, then the Russian, Indian and Brazilian markets, respectively. However, under each of the five non-Gaussian error distributions, the Chinese market is the most volatile, while the least volatile is the Brazilian market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1