{"title":"Y3+掺杂Bi2MoO6纳米片的制备提高了可见光催化活性:增加了比表面积,氧空位形成和有效的载流子分离","authors":"Hong Qiu, Shujing Liu, Xiaohui Ma, Yajie Li, Yueyan Fan, Wenjun Li, Hualei Zhou","doi":"10.1007/s12613-023-2656-z","DOIUrl":null,"url":null,"abstract":"<div><p>Although Bi<sub>2</sub>MoO<sub>6</sub> (BMO) has recently received extensive attention, its visible-light photocatalytic activity remains poor due to its limited photoresponse range and low charge separation efficiency. In this work, a series of visible-light-driven Y<sup>3+</sup>-doped BMO (Y-BMO) photocatalysts were synthesized via a hydrothermal method. Degradation experiments on Rhodamine B and Congo red organic pollutants revealed that the optimal degradation rates of Y-BMO were 4.3 and 5.3 times those of pure BMO, respectively. The degradation efficiency of Y-BMO did not significantly decrease after four cycle experiments. As a result of Y<sup>3+</sup> doping, the crystal structure of BMO changed from a thick layer structure to a thin flower-like structure with an increased specific surface area. X-ray photoelectron spectroscopy showed the presence of high-intensity peaks for the O 1s orbital at 531.01 and 530.06 eV, confirming the formation of oxygen vacancies in Y-BMO. Photoluminescence (PL) and electrochemical impedance spectroscopy measurements revealed that the PL intensity and interface resistances of composites decreased significantly, indicating reduced electron–hole pair recombination. This work provides an effective way to prepare high-efficiency Bi-based photocatalysts by doping rare earth metal ions for improved photocatalytic performance.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 9","pages":"1824 - 1834"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Y3+-doped Bi2MoO6 nanosheets for improved visible-light photocatalytic activity: Increased specific surface area, oxygen vacancy formation and efficient carrier separation\",\"authors\":\"Hong Qiu, Shujing Liu, Xiaohui Ma, Yajie Li, Yueyan Fan, Wenjun Li, Hualei Zhou\",\"doi\":\"10.1007/s12613-023-2656-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although Bi<sub>2</sub>MoO<sub>6</sub> (BMO) has recently received extensive attention, its visible-light photocatalytic activity remains poor due to its limited photoresponse range and low charge separation efficiency. In this work, a series of visible-light-driven Y<sup>3+</sup>-doped BMO (Y-BMO) photocatalysts were synthesized via a hydrothermal method. Degradation experiments on Rhodamine B and Congo red organic pollutants revealed that the optimal degradation rates of Y-BMO were 4.3 and 5.3 times those of pure BMO, respectively. The degradation efficiency of Y-BMO did not significantly decrease after four cycle experiments. As a result of Y<sup>3+</sup> doping, the crystal structure of BMO changed from a thick layer structure to a thin flower-like structure with an increased specific surface area. X-ray photoelectron spectroscopy showed the presence of high-intensity peaks for the O 1s orbital at 531.01 and 530.06 eV, confirming the formation of oxygen vacancies in Y-BMO. Photoluminescence (PL) and electrochemical impedance spectroscopy measurements revealed that the PL intensity and interface resistances of composites decreased significantly, indicating reduced electron–hole pair recombination. This work provides an effective way to prepare high-efficiency Bi-based photocatalysts by doping rare earth metal ions for improved photocatalytic performance.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 9\",\"pages\":\"1824 - 1834\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2656-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2656-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of Y3+-doped Bi2MoO6 nanosheets for improved visible-light photocatalytic activity: Increased specific surface area, oxygen vacancy formation and efficient carrier separation
Although Bi2MoO6 (BMO) has recently received extensive attention, its visible-light photocatalytic activity remains poor due to its limited photoresponse range and low charge separation efficiency. In this work, a series of visible-light-driven Y3+-doped BMO (Y-BMO) photocatalysts were synthesized via a hydrothermal method. Degradation experiments on Rhodamine B and Congo red organic pollutants revealed that the optimal degradation rates of Y-BMO were 4.3 and 5.3 times those of pure BMO, respectively. The degradation efficiency of Y-BMO did not significantly decrease after four cycle experiments. As a result of Y3+ doping, the crystal structure of BMO changed from a thick layer structure to a thin flower-like structure with an increased specific surface area. X-ray photoelectron spectroscopy showed the presence of high-intensity peaks for the O 1s orbital at 531.01 and 530.06 eV, confirming the formation of oxygen vacancies in Y-BMO. Photoluminescence (PL) and electrochemical impedance spectroscopy measurements revealed that the PL intensity and interface resistances of composites decreased significantly, indicating reduced electron–hole pair recombination. This work provides an effective way to prepare high-efficiency Bi-based photocatalysts by doping rare earth metal ions for improved photocatalytic performance.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.