基于神经网络的认知无线电频谱预测优化方案

Q3 Business, Management and Accounting International Journal of Enterprise Network Management Pub Date : 2019-11-18 DOI:10.1504/ijenm.2019.10023700
B. Bhuvaneswari, T. Meeradevi
{"title":"基于神经网络的认知无线电频谱预测优化方案","authors":"B. Bhuvaneswari, T. Meeradevi","doi":"10.1504/ijenm.2019.10023700","DOIUrl":null,"url":null,"abstract":"A cognitive radio (CR) technology enables all the users to utilise spectrum without interference. There will be a spectrum sensing for all the non-authorised users to perceive the other possibilities of getting a channel. The traffic feature will be unknown to be a priori to design the spectrum predictor with the back propagation (BP) neural network (NN) model and the multi-layer perceptron (MLP).This work proposed an optimised neural network to obtain improved results. The BP algorithm will not require prior knowledge of the real world problems that are trapped within the local minima. This is used widely to solve the problems and found in literature as an evolutionary algorithm like the bacterial foraging optimisation algorithm (BFOA) used for the MLP NN for enhancing the process of learning and improving the rate of convergence as well as accuracy of classification. Performing this spectrum predictor will be analysed using some extensive simulations.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN OPTIMIZED NEURAL NETWORK BASED SPECTRUM PREDICTION SCHEME FOR COGNITIVE RADIO\",\"authors\":\"B. Bhuvaneswari, T. Meeradevi\",\"doi\":\"10.1504/ijenm.2019.10023700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cognitive radio (CR) technology enables all the users to utilise spectrum without interference. There will be a spectrum sensing for all the non-authorised users to perceive the other possibilities of getting a channel. The traffic feature will be unknown to be a priori to design the spectrum predictor with the back propagation (BP) neural network (NN) model and the multi-layer perceptron (MLP).This work proposed an optimised neural network to obtain improved results. The BP algorithm will not require prior knowledge of the real world problems that are trapped within the local minima. This is used widely to solve the problems and found in literature as an evolutionary algorithm like the bacterial foraging optimisation algorithm (BFOA) used for the MLP NN for enhancing the process of learning and improving the rate of convergence as well as accuracy of classification. Performing this spectrum predictor will be analysed using some extensive simulations.\",\"PeriodicalId\":39284,\"journal\":{\"name\":\"International Journal of Enterprise Network Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Network Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijenm.2019.10023700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijenm.2019.10023700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

认知无线电(CR)技术使所有用户能够在没有干扰的情况下使用频谱。将为所有未经授权的用户提供频谱感知,以感知获得频道的其他可能性。在使用反向传播(BP)神经网络(NN)模型和多层感知器(MLP)设计频谱预测器时,流量特征将是未知的先验。本文提出了一种优化的神经网络,以获得改进的结果。BP算法将不需要被困在局部极小值内的真实世界问题的先验知识。这被广泛用于解决这些问题,并在文献中被发现是一种进化算法,如用于MLP神经网络的细菌觅食优化算法(BFOA),用于增强学习过程,提高收敛速度和分类精度。将使用一些广泛的模拟来分析执行该频谱预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AN OPTIMIZED NEURAL NETWORK BASED SPECTRUM PREDICTION SCHEME FOR COGNITIVE RADIO
A cognitive radio (CR) technology enables all the users to utilise spectrum without interference. There will be a spectrum sensing for all the non-authorised users to perceive the other possibilities of getting a channel. The traffic feature will be unknown to be a priori to design the spectrum predictor with the back propagation (BP) neural network (NN) model and the multi-layer perceptron (MLP).This work proposed an optimised neural network to obtain improved results. The BP algorithm will not require prior knowledge of the real world problems that are trapped within the local minima. This is used widely to solve the problems and found in literature as an evolutionary algorithm like the bacterial foraging optimisation algorithm (BFOA) used for the MLP NN for enhancing the process of learning and improving the rate of convergence as well as accuracy of classification. Performing this spectrum predictor will be analysed using some extensive simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
期刊最新文献
Multi-tier firm-level analysis of global auto supply chain: centrality and financial performance Development of coating material for low carbon steels using MCDM Multi-objective optimisation of wear process parameters of 413/fly ash composites using grey relational analysis Fashion market segmentation using Facebook: an empirical approach Development of coating material for low carbon steels using MCDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1