{"title":"参数模型中具有时变边际分布的常截面相关性检验","authors":"Matthias Kaldorf, Dominik Wied","doi":"10.1515/snde-2019-0043","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes parametric two-step procedures for assessing the stability of cross-sectional dependency measures in the presence of potential breaks in the marginal distributions. The procedures are based on formerly proposed sup-LR tests in which restricted and unrestricted likelihood functions are compared with each other. First, we show theoretically that standard asymptotics do not hold in this situation. We propose a suitable bootstrap scheme and derive test statistics in different commonly used settings. The properties of the test statistics and precision of the associated change-point estimator are analysed and compared with existing non-parametric methods in various Monte Carlo simulations. These studies reveal advantages in test power for higher-dimensional data and an almost uniform superiority of the sup-LR test in terms of precision of the change-point estimator. We then apply this method to equity returns of European banks during the financial crisis of 2008.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"1 - 24"},"PeriodicalIF":0.7000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/snde-2019-0043","citationCount":"3","resultStr":"{\"title\":\"Testing constant cross-sectional dependence with time-varying marginal distributions in parametric models\",\"authors\":\"Matthias Kaldorf, Dominik Wied\",\"doi\":\"10.1515/snde-2019-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper proposes parametric two-step procedures for assessing the stability of cross-sectional dependency measures in the presence of potential breaks in the marginal distributions. The procedures are based on formerly proposed sup-LR tests in which restricted and unrestricted likelihood functions are compared with each other. First, we show theoretically that standard asymptotics do not hold in this situation. We propose a suitable bootstrap scheme and derive test statistics in different commonly used settings. The properties of the test statistics and precision of the associated change-point estimator are analysed and compared with existing non-parametric methods in various Monte Carlo simulations. These studies reveal advantages in test power for higher-dimensional data and an almost uniform superiority of the sup-LR test in terms of precision of the change-point estimator. We then apply this method to equity returns of European banks during the financial crisis of 2008.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"26 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/snde-2019-0043\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2019-0043\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2019-0043","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Testing constant cross-sectional dependence with time-varying marginal distributions in parametric models
Abstract This paper proposes parametric two-step procedures for assessing the stability of cross-sectional dependency measures in the presence of potential breaks in the marginal distributions. The procedures are based on formerly proposed sup-LR tests in which restricted and unrestricted likelihood functions are compared with each other. First, we show theoretically that standard asymptotics do not hold in this situation. We propose a suitable bootstrap scheme and derive test statistics in different commonly used settings. The properties of the test statistics and precision of the associated change-point estimator are analysed and compared with existing non-parametric methods in various Monte Carlo simulations. These studies reveal advantages in test power for higher-dimensional data and an almost uniform superiority of the sup-LR test in terms of precision of the change-point estimator. We then apply this method to equity returns of European banks during the financial crisis of 2008.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.