试验场条件下燃料箱带模拟的任意拉格朗日-欧拉方法研究

G. Song, C. Tan
{"title":"试验场条件下燃料箱带模拟的任意拉格朗日-欧拉方法研究","authors":"G. Song, C. Tan","doi":"10.1504/IJVP.2019.10021233","DOIUrl":null,"url":null,"abstract":"The arbitrary Lagrangian-Eulerian (ALE) is a hybrid finite element formulation, which is developed through combining modern algorithms for Lagrangian hydrodynamics, meshing technology and remap methods developed for high-resolution Eulerian methods. In automotive, simulation of dynamic stress and fatigue life of fuel tank straps is a complex problem. Typically, a fuel tank is held with fuel tank straps. Being a complex problem with overall movement lying in the domain of nonlinear large rotation dynamics, the involved fuel sloshing behaviour causes more intrication. The objective is initiated to investigate the advantage of ALE method in simulating fuel sloshing through fuel tank and fuel tank strap movement under proving ground conditions, using the nonlinear large rotation dynamic method in RADIOSS. Afterward, the fatigue life of fuel tank straps is predicted through nCode DesignLife, resulting in good correlation with test by accurate prediction of the crack initiation locations and sequence in the fuel tank straps.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrary Lagrangian-Eulerian method investigation on fuel tank strap simulation under proving ground condition\",\"authors\":\"G. Song, C. Tan\",\"doi\":\"10.1504/IJVP.2019.10021233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The arbitrary Lagrangian-Eulerian (ALE) is a hybrid finite element formulation, which is developed through combining modern algorithms for Lagrangian hydrodynamics, meshing technology and remap methods developed for high-resolution Eulerian methods. In automotive, simulation of dynamic stress and fatigue life of fuel tank straps is a complex problem. Typically, a fuel tank is held with fuel tank straps. Being a complex problem with overall movement lying in the domain of nonlinear large rotation dynamics, the involved fuel sloshing behaviour causes more intrication. The objective is initiated to investigate the advantage of ALE method in simulating fuel sloshing through fuel tank and fuel tank strap movement under proving ground conditions, using the nonlinear large rotation dynamic method in RADIOSS. Afterward, the fatigue life of fuel tank straps is predicted through nCode DesignLife, resulting in good correlation with test by accurate prediction of the crack initiation locations and sequence in the fuel tank straps.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVP.2019.10021233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVP.2019.10021233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

任意拉格朗日-欧拉(ALE)是一种混合有限元公式,它是通过结合拉格朗日流体力学的现代算法、网格技术和为高分辨率欧拉方法开发的重映射方法而开发的。在汽车中,油箱带动态应力和疲劳寿命的模拟是一个复杂的问题。通常,燃油箱由燃油箱束带固定。作为一个整体运动处于非线性大旋转动力学领域的复杂问题,所涉及的燃料晃动行为引起了更为复杂的问题。目的是利用RADIOS中的非线性大旋转动力学方法,研究ALE方法在试验场条件下模拟燃料在燃料箱中的晃动和燃料箱带运动的优势。然后,通过nCode DesignLife预测了油箱带的疲劳寿命,通过准确预测油箱带的裂纹萌生位置和顺序,与试验结果具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arbitrary Lagrangian-Eulerian method investigation on fuel tank strap simulation under proving ground condition
The arbitrary Lagrangian-Eulerian (ALE) is a hybrid finite element formulation, which is developed through combining modern algorithms for Lagrangian hydrodynamics, meshing technology and remap methods developed for high-resolution Eulerian methods. In automotive, simulation of dynamic stress and fatigue life of fuel tank straps is a complex problem. Typically, a fuel tank is held with fuel tank straps. Being a complex problem with overall movement lying in the domain of nonlinear large rotation dynamics, the involved fuel sloshing behaviour causes more intrication. The objective is initiated to investigate the advantage of ALE method in simulating fuel sloshing through fuel tank and fuel tank strap movement under proving ground conditions, using the nonlinear large rotation dynamic method in RADIOSS. Afterward, the fatigue life of fuel tank straps is predicted through nCode DesignLife, resulting in good correlation with test by accurate prediction of the crack initiation locations and sequence in the fuel tank straps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Performance
International Journal of Vehicle Performance Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.20
自引率
0.00%
发文量
30
期刊最新文献
Six-sigma robust design optimisation of an electric bus considering crashworthiness and lightweight Analytical model for combined ride and handling with leaf spring suspension in commercial vehicles Shifting control optimisation of automatic transmission with congested conditions identification based on the support vector machine Dual evaporator system as an alternative for air-conditioning and refrigeration in automobiles Performance analysis of automotive exhaust muffler characteristics integrating supervised machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1