探索会话搜索会话的经济性

IF 2.4 3区 管理学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Aslib Journal of Information Management Pub Date : 2023-04-11 DOI:10.1108/ajim-08-2022-0368
Souvick Ghosh, Julie Gogoi, Kristen Chua
{"title":"探索会话搜索会话的经济性","authors":"Souvick Ghosh, Julie Gogoi, Kristen Chua","doi":"10.1108/ajim-08-2022-0368","DOIUrl":null,"url":null,"abstract":"PurposeTurn-taking is beneficial to conversational search success, but the increase in turns and time can also increase the cognitive load of the user. Therefore, in this research paper, the authors view conversational search sessions through the lens of economic theory and use the economic models of search to analyze the various costs and benefits of information-seeking interactions.Design/methodology/approachFirst, the authors built a cost-benefit model for conversational search sessions by defining action types and performing an intellectual mapping of actual sessions into sequences of these actions (using thematic analyses). The authors used the hypothesized cost and benefit actions (obtained from the user-system dialogs), along with the number of turns, utterances and time-related parameters, to propose the mathematical model. Next, the authors tested the model empirically by comparing the model scores to the user satisfaction and task success scores (collected through questionnaires). By representing each session as a bag of actions, the authors developed linear regression models to predict task success and user satisfaction.FindingsThrough feature analysis and significance testing, the authors identify the different parameters that contribute significantly to user satisfaction and task success scores. Error analysis shows that the model predicts task success and user satisfaction reasonably well, with the average prediction error being 0.5 for both (on a 5-point scale).Originality/valueThe authors' research is an initial step toward building a mathematical model for predicting user satisfaction and task success in conversational search sessions.","PeriodicalId":53152,"journal":{"name":"Aslib Journal of Information Management","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the economics of conversational search sessions\",\"authors\":\"Souvick Ghosh, Julie Gogoi, Kristen Chua\",\"doi\":\"10.1108/ajim-08-2022-0368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeTurn-taking is beneficial to conversational search success, but the increase in turns and time can also increase the cognitive load of the user. Therefore, in this research paper, the authors view conversational search sessions through the lens of economic theory and use the economic models of search to analyze the various costs and benefits of information-seeking interactions.Design/methodology/approachFirst, the authors built a cost-benefit model for conversational search sessions by defining action types and performing an intellectual mapping of actual sessions into sequences of these actions (using thematic analyses). The authors used the hypothesized cost and benefit actions (obtained from the user-system dialogs), along with the number of turns, utterances and time-related parameters, to propose the mathematical model. Next, the authors tested the model empirically by comparing the model scores to the user satisfaction and task success scores (collected through questionnaires). By representing each session as a bag of actions, the authors developed linear regression models to predict task success and user satisfaction.FindingsThrough feature analysis and significance testing, the authors identify the different parameters that contribute significantly to user satisfaction and task success scores. Error analysis shows that the model predicts task success and user satisfaction reasonably well, with the average prediction error being 0.5 for both (on a 5-point scale).Originality/valueThe authors' research is an initial step toward building a mathematical model for predicting user satisfaction and task success in conversational search sessions.\",\"PeriodicalId\":53152,\"journal\":{\"name\":\"Aslib Journal of Information Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aslib Journal of Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/ajim-08-2022-0368\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aslib Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/ajim-08-2022-0368","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的转向有利于会话搜索的成功,但转向次数和时间的增加也会增加用户的认知负荷。因此,在本文中,作者从经济理论的角度看待会话搜索会话,并使用搜索的经济模型来分析信息寻求互动的各种成本和收益。设计/方法论/方法首先,作者通过定义行动类型并将实际会话智能映射为这些行动的序列(使用主题分析),为会话搜索会话建立了成本效益模型。作者使用假设的成本和收益行为(从用户系统对话框中获得),以及转弯次数、话语和时间相关参数,提出了数学模型。接下来,作者通过将模型得分与用户满意度和任务成功率得分(通过问卷收集)进行比较,对模型进行了实证测试。通过将每个会话表示为一袋行动,作者开发了线性回归模型来预测任务成功率和用户满意度。结果通过特征分析和显著性测试,作者确定了对用户满意度和任务成功分数有显著贡献的不同参数。误差分析表明,该模型对任务成功率和用户满意度的预测相当好,两者的平均预测误差均为0.5(5分制)。原创性/价值作者的研究是建立会话搜索会话中预测用户满意度和任务成功率的数学模型的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the economics of conversational search sessions
PurposeTurn-taking is beneficial to conversational search success, but the increase in turns and time can also increase the cognitive load of the user. Therefore, in this research paper, the authors view conversational search sessions through the lens of economic theory and use the economic models of search to analyze the various costs and benefits of information-seeking interactions.Design/methodology/approachFirst, the authors built a cost-benefit model for conversational search sessions by defining action types and performing an intellectual mapping of actual sessions into sequences of these actions (using thematic analyses). The authors used the hypothesized cost and benefit actions (obtained from the user-system dialogs), along with the number of turns, utterances and time-related parameters, to propose the mathematical model. Next, the authors tested the model empirically by comparing the model scores to the user satisfaction and task success scores (collected through questionnaires). By representing each session as a bag of actions, the authors developed linear regression models to predict task success and user satisfaction.FindingsThrough feature analysis and significance testing, the authors identify the different parameters that contribute significantly to user satisfaction and task success scores. Error analysis shows that the model predicts task success and user satisfaction reasonably well, with the average prediction error being 0.5 for both (on a 5-point scale).Originality/valueThe authors' research is an initial step toward building a mathematical model for predicting user satisfaction and task success in conversational search sessions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aslib Journal of Information Management
Aslib Journal of Information Management COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.30
自引率
19.20%
发文量
79
期刊介绍: Aslib Journal of Information Management covers a broad range of issues in the field, including economic, behavioural, social, ethical, technological, international, business-related, political and management-orientated factors. Contributors are encouraged to spell out the practical implications of their work. Aslib Journal of Information Management Areas of interest include topics such as social media, data protection, search engines, information retrieval, digital libraries, information behaviour, intellectual property and copyright, information industry, digital repositories and information policy and governance.
期刊最新文献
Exploring the impact of team engagement on patient satisfaction: insights from social support and transactive memory system Factors affecting user intention to use social commerce continuously from a habit perspective What decision-making process do mHealth users go through when faced with privacy disclosure behaviors? A dual trade-off perspective Collaborative online shopping: customer satisfaction and the influence of product type, gender and involvement An associative text analyzer to facilitate effectiveness of exploring historical texts for digital humanities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1