利用并行机器学习技术将目标跟踪系统应用于公共监控摄像头以加强隔离和社交距离

Sokyna M. Alqatawneh, Khalid Jaber, Mosa Salah, D. Yehia, Omayma Alqatawneh, Abdulrahman Abulahoum
{"title":"利用并行机器学习技术将目标跟踪系统应用于公共监控摄像头以加强隔离和社交距离","authors":"Sokyna M. Alqatawneh, Khalid Jaber, Mosa Salah, D. Yehia, Omayma Alqatawneh, Abdulrahman Abulahoum","doi":"10.15849/ijasca.211128.12","DOIUrl":null,"url":null,"abstract":"Like many countries, Jordan has resorted to lockdown in an attempt to contain the outbreak of Coronavirus (Covid-19). A set of precautions such as quarantines, isolations, and social distancing were taken in order to tackle its rapid spread of Covid-19. However, the authorities were facing a serious issue with enforcing quarantine instructions and social distancing among its people. In this paper, a social distancing mentoring system has been designed to alert the authorities if any of the citizens violated the quarantine instructions and to detect the crowds and measure their social distancing using an object tracking technique that works in real-time base. This system utilises the widespread surveillance cameras that already exist in public places and outside many residential buildings. To ensure the effectiveness of this approach, the system uses cameras deployed on the campus of Al-Zaytoonah University of Jordan. The results showed the efficiency of this system in tracking people and determining the distances between them in accordance with public safety instructions. This work is the first approach to handle the classification challenges for moving objects using a shared-memory model of multicore techniques. Keywords: Covid-19, Parallel computing, Risk management, Social distancing, Tracking system.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Employing of Object Tracking System in Public Surveillance Cameras to Enforce Quarantine and Social Distancing Using Parallel Machine Learning Techniques\",\"authors\":\"Sokyna M. Alqatawneh, Khalid Jaber, Mosa Salah, D. Yehia, Omayma Alqatawneh, Abdulrahman Abulahoum\",\"doi\":\"10.15849/ijasca.211128.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Like many countries, Jordan has resorted to lockdown in an attempt to contain the outbreak of Coronavirus (Covid-19). A set of precautions such as quarantines, isolations, and social distancing were taken in order to tackle its rapid spread of Covid-19. However, the authorities were facing a serious issue with enforcing quarantine instructions and social distancing among its people. In this paper, a social distancing mentoring system has been designed to alert the authorities if any of the citizens violated the quarantine instructions and to detect the crowds and measure their social distancing using an object tracking technique that works in real-time base. This system utilises the widespread surveillance cameras that already exist in public places and outside many residential buildings. To ensure the effectiveness of this approach, the system uses cameras deployed on the campus of Al-Zaytoonah University of Jordan. The results showed the efficiency of this system in tracking people and determining the distances between them in accordance with public safety instructions. This work is the first approach to handle the classification challenges for moving objects using a shared-memory model of multicore techniques. Keywords: Covid-19, Parallel computing, Risk management, Social distancing, Tracking system.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.211128.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

与许多国家一样,约旦采取了封锁措施,试图遏制冠状病毒(新冠肺炎)的爆发。为了应对新冠肺炎的快速传播,采取了隔离、隔离和保持社交距离等一系列预防措施。然而,当局在执行隔离指示和保持民众社交距离方面面临着严重问题。在这篇论文中,设计了一个保持社交距离的指导系统,以在任何公民违反隔离指示时向当局发出警报,并使用实时工作的对象跟踪技术检测人群并测量他们的社交距离。该系统利用了公共场所和许多住宅楼外已经存在的广泛的监控摄像头。为了确保这种方法的有效性,该系统使用了部署在约旦Al-Zaytoonah大学校园内的摄像头。结果表明,该系统在根据公共安全指示跟踪人员和确定他们之间的距离方面是有效的。这项工作是第一种使用多核技术的共享内存模型来处理移动对象的分类挑战的方法。关键词:新冠肺炎,并行计算,风险管理,社交距离,追踪系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Employing of Object Tracking System in Public Surveillance Cameras to Enforce Quarantine and Social Distancing Using Parallel Machine Learning Techniques
Like many countries, Jordan has resorted to lockdown in an attempt to contain the outbreak of Coronavirus (Covid-19). A set of precautions such as quarantines, isolations, and social distancing were taken in order to tackle its rapid spread of Covid-19. However, the authorities were facing a serious issue with enforcing quarantine instructions and social distancing among its people. In this paper, a social distancing mentoring system has been designed to alert the authorities if any of the citizens violated the quarantine instructions and to detect the crowds and measure their social distancing using an object tracking technique that works in real-time base. This system utilises the widespread surveillance cameras that already exist in public places and outside many residential buildings. To ensure the effectiveness of this approach, the system uses cameras deployed on the campus of Al-Zaytoonah University of Jordan. The results showed the efficiency of this system in tracking people and determining the distances between them in accordance with public safety instructions. This work is the first approach to handle the classification challenges for moving objects using a shared-memory model of multicore techniques. Keywords: Covid-19, Parallel computing, Risk management, Social distancing, Tracking system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
期刊最新文献
Insider Threat Prevention in the US Banking System Cybersecurity Strategies for Safeguarding Customer’s Data and Preventing Financial Fraud in the United States Financial Sectors Multilevel Thresholding Image Segmentation Based-Logarithm Decreasing Inertia Weight Particle Swarm Optimization Improvement on I-Devices Using L-GCNN Classifier for Smart Mosque Simulation Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1