{"title":"通过学习非线性低维模型进行约束磁共振光谱成像","authors":"F. Lam, Yahang Li, Xi Peng","doi":"10.1109/TMI.2019.2930586","DOIUrl":null,"url":null,"abstract":"Magnetic resonance spectroscopic imaging (MRSI) is a powerful molecular imaging modality but has very limited speed, resolution, and SNR tradeoffs. Construction of a low-dimensional model to effectively reduce the dimensionality of the imaging problem has recently shown great promise in improving these tradeoffs. This paper presents a new approach to model and reconstruct the spectroscopic signals by learning a nonlinear low-dimensional representation of the general MR spectra. Specifically, we trained a deep neural network to capture the low-dimensional manifold, where the high-dimensional spectroscopic signals reside. A regularization formulation is proposed to effectively integrate the learned model and physics-based data acquisition model for MRSI reconstruction with the capability to incorporate additional spatiospectral constraints. An efficient numerical algorithm was developed to solve the associated optimization problem involving back-propagating the trained network. Simulation and experimental results were obtained to demonstrate the representation power of the learned model and the ability of the proposed formulation in producing SNR-enhancing reconstruction from the practical MRSI data.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"39 1","pages":"545-555"},"PeriodicalIF":8.9000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMI.2019.2930586","citationCount":"41","resultStr":"{\"title\":\"Constrained Magnetic Resonance Spectroscopic Imaging by Learning Nonlinear Low-Dimensional Models\",\"authors\":\"F. Lam, Yahang Li, Xi Peng\",\"doi\":\"10.1109/TMI.2019.2930586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance spectroscopic imaging (MRSI) is a powerful molecular imaging modality but has very limited speed, resolution, and SNR tradeoffs. Construction of a low-dimensional model to effectively reduce the dimensionality of the imaging problem has recently shown great promise in improving these tradeoffs. This paper presents a new approach to model and reconstruct the spectroscopic signals by learning a nonlinear low-dimensional representation of the general MR spectra. Specifically, we trained a deep neural network to capture the low-dimensional manifold, where the high-dimensional spectroscopic signals reside. A regularization formulation is proposed to effectively integrate the learned model and physics-based data acquisition model for MRSI reconstruction with the capability to incorporate additional spatiospectral constraints. An efficient numerical algorithm was developed to solve the associated optimization problem involving back-propagating the trained network. Simulation and experimental results were obtained to demonstrate the representation power of the learned model and the ability of the proposed formulation in producing SNR-enhancing reconstruction from the practical MRSI data.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"39 1\",\"pages\":\"545-555\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMI.2019.2930586\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2019.2930586\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TMI.2019.2930586","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Constrained Magnetic Resonance Spectroscopic Imaging by Learning Nonlinear Low-Dimensional Models
Magnetic resonance spectroscopic imaging (MRSI) is a powerful molecular imaging modality but has very limited speed, resolution, and SNR tradeoffs. Construction of a low-dimensional model to effectively reduce the dimensionality of the imaging problem has recently shown great promise in improving these tradeoffs. This paper presents a new approach to model and reconstruct the spectroscopic signals by learning a nonlinear low-dimensional representation of the general MR spectra. Specifically, we trained a deep neural network to capture the low-dimensional manifold, where the high-dimensional spectroscopic signals reside. A regularization formulation is proposed to effectively integrate the learned model and physics-based data acquisition model for MRSI reconstruction with the capability to incorporate additional spatiospectral constraints. An efficient numerical algorithm was developed to solve the associated optimization problem involving back-propagating the trained network. Simulation and experimental results were obtained to demonstrate the representation power of the learned model and the ability of the proposed formulation in producing SNR-enhancing reconstruction from the practical MRSI data.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.