{"title":"参数边界条件下(p,q,r)-拉普拉斯算子的特征值","authors":"L. Barbu, G. Moroşanu","doi":"10.37193/cjm.2022.03.03","DOIUrl":null,"url":null,"abstract":"\"Consider in a bounded domain $\\Omega \\subset \\mathbb{R}^N$, $N\\ge 2$, with smooth boundary $\\partial \\Omega$ the following nonlinear eigenvalue problem \\begin{equation*} \\left\\{\\begin{array}{l} -\\sum_{\\alpha \\in \\{ p,q,r\\}}\\rho_{\\alpha}\\Delta_{\\alpha}u=\\lambda a(x) \\mid u\\mid ^{r-2}u\\ \\ \\mbox{ in} ~ \\Omega,\\\\[1mm] \\big(\\sum_{\\alpha \\in \\{p,q,r\\}}\\rho_{\\alpha}\\mid \\nabla u\\mid ^{\\alpha-2}\\big)\\frac{\\partial u}{\\partial\\nu}=\\lambda b(x) \\mid u\\mid ^{r-2}u ~ \\mbox{ on} ~ \\partial \\Omega, \\end{array}\\right. \\end{equation*} where $p, q, r\\in (1, +\\infty),~q<p,~r\\not\\in \\{p, q\\};$ $\\rho_p, \\rho_q, \\rho_r$ are positive constants; $\\Delta_{\\alpha}$ is the usual $\\alpha$-Laplacian, i.e., $\\Delta_\\alpha u=\\, \\mbox{div} \\, (|\\nabla u|^{\\alpha-2}\\nabla u)$; $\\nu$ is the unit outward normal to $\\partial \\Omega$; $a\\in L^{\\infty}(\\Omega),$ $b\\in L^{\\infty}(\\partial\\Omega)$ {are given nonnegative functions satisfying} $\\int_\\Omega a~dx+\\int_{\\partial\\Omega} b~d\\sigma >0.$ Such a triple-phase problem is motivated by some models arising in mathematical physics. If $r \\not\\in (q, p),$ we determine a positive number $\\lambda_r$ such that the set of eigenvalues of the above problem is precisely $\\{ 0\\} \\cup (\\lambda_r, +\\infty )$. On the other hand, in the complementary case $r \\in (q, p)$ with $r < q(N-1)/(N-q)$ if $q<N$, we prove that there exist two positive constants $\\lambda_*<\\lambda^*$ such that any $\\lambda\\in \\{0\\}\\cup [\\lambda^*, \\infty)$ is an eigenvalue of the above problem, while the set $(-\\infty, 0)\\cup (0, \\lambda_*)$ contains no eigenvalue $\\lambda$ of the problem.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Eigenvalues of the (p, q, r)-Laplacian with a parametric boundary condition\\\"\",\"authors\":\"L. Barbu, G. Moroşanu\",\"doi\":\"10.37193/cjm.2022.03.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Consider in a bounded domain $\\\\Omega \\\\subset \\\\mathbb{R}^N$, $N\\\\ge 2$, with smooth boundary $\\\\partial \\\\Omega$ the following nonlinear eigenvalue problem \\\\begin{equation*} \\\\left\\\\{\\\\begin{array}{l} -\\\\sum_{\\\\alpha \\\\in \\\\{ p,q,r\\\\}}\\\\rho_{\\\\alpha}\\\\Delta_{\\\\alpha}u=\\\\lambda a(x) \\\\mid u\\\\mid ^{r-2}u\\\\ \\\\ \\\\mbox{ in} ~ \\\\Omega,\\\\\\\\[1mm] \\\\big(\\\\sum_{\\\\alpha \\\\in \\\\{p,q,r\\\\}}\\\\rho_{\\\\alpha}\\\\mid \\\\nabla u\\\\mid ^{\\\\alpha-2}\\\\big)\\\\frac{\\\\partial u}{\\\\partial\\\\nu}=\\\\lambda b(x) \\\\mid u\\\\mid ^{r-2}u ~ \\\\mbox{ on} ~ \\\\partial \\\\Omega, \\\\end{array}\\\\right. \\\\end{equation*} where $p, q, r\\\\in (1, +\\\\infty),~q<p,~r\\\\not\\\\in \\\\{p, q\\\\};$ $\\\\rho_p, \\\\rho_q, \\\\rho_r$ are positive constants; $\\\\Delta_{\\\\alpha}$ is the usual $\\\\alpha$-Laplacian, i.e., $\\\\Delta_\\\\alpha u=\\\\, \\\\mbox{div} \\\\, (|\\\\nabla u|^{\\\\alpha-2}\\\\nabla u)$; $\\\\nu$ is the unit outward normal to $\\\\partial \\\\Omega$; $a\\\\in L^{\\\\infty}(\\\\Omega),$ $b\\\\in L^{\\\\infty}(\\\\partial\\\\Omega)$ {are given nonnegative functions satisfying} $\\\\int_\\\\Omega a~dx+\\\\int_{\\\\partial\\\\Omega} b~d\\\\sigma >0.$ Such a triple-phase problem is motivated by some models arising in mathematical physics. If $r \\\\not\\\\in (q, p),$ we determine a positive number $\\\\lambda_r$ such that the set of eigenvalues of the above problem is precisely $\\\\{ 0\\\\} \\\\cup (\\\\lambda_r, +\\\\infty )$. On the other hand, in the complementary case $r \\\\in (q, p)$ with $r < q(N-1)/(N-q)$ if $q<N$, we prove that there exist two positive constants $\\\\lambda_*<\\\\lambda^*$ such that any $\\\\lambda\\\\in \\\\{0\\\\}\\\\cup [\\\\lambda^*, \\\\infty)$ is an eigenvalue of the above problem, while the set $(-\\\\infty, 0)\\\\cup (0, \\\\lambda_*)$ contains no eigenvalue $\\\\lambda$ of the problem.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.03.03\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.03.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
"Eigenvalues of the (p, q, r)-Laplacian with a parametric boundary condition"
"Consider in a bounded domain $\Omega \subset \mathbb{R}^N$, $N\ge 2$, with smooth boundary $\partial \Omega$ the following nonlinear eigenvalue problem \begin{equation*} \left\{\begin{array}{l} -\sum_{\alpha \in \{ p,q,r\}}\rho_{\alpha}\Delta_{\alpha}u=\lambda a(x) \mid u\mid ^{r-2}u\ \ \mbox{ in} ~ \Omega,\\[1mm] \big(\sum_{\alpha \in \{p,q,r\}}\rho_{\alpha}\mid \nabla u\mid ^{\alpha-2}\big)\frac{\partial u}{\partial\nu}=\lambda b(x) \mid u\mid ^{r-2}u ~ \mbox{ on} ~ \partial \Omega, \end{array}\right. \end{equation*} where $p, q, r\in (1, +\infty),~q
0.$ Such a triple-phase problem is motivated by some models arising in mathematical physics. If $r \not\in (q, p),$ we determine a positive number $\lambda_r$ such that the set of eigenvalues of the above problem is precisely $\{ 0\} \cup (\lambda_r, +\infty )$. On the other hand, in the complementary case $r \in (q, p)$ with $r < q(N-1)/(N-q)$ if $q
期刊介绍:
Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.