Markus Eszlinger, Alexandra Stephenson, Shideh Mirhadi, Konrad Patyra, Michael F Moran, Moosa Khalil, Jukka Kero, Ralf Paschke
{"title":"促甲状腺激素受体D633H敲除小鼠促分裂原活化蛋白激酶信号的激活与甲状腺乳头状癌的发生。","authors":"Markus Eszlinger, Alexandra Stephenson, Shideh Mirhadi, Konrad Patyra, Michael F Moran, Moosa Khalil, Jukka Kero, Ralf Paschke","doi":"10.1530/ETJ-23-0049","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age.</p><p><strong>Methods: </strong>To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development.</p><p><strong>Results: </strong>Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target.</p><p><strong>Conclusion: </strong>The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.</p>","PeriodicalId":12159,"journal":{"name":"European Thyroid Journal","volume":"12 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activation of mitogen-activated protein kinase signaling and development of papillary thyroid carcinoma in thyroid-stimulating hormone receptor D633H knockin mice.\",\"authors\":\"Markus Eszlinger, Alexandra Stephenson, Shideh Mirhadi, Konrad Patyra, Michael F Moran, Moosa Khalil, Jukka Kero, Ralf Paschke\",\"doi\":\"10.1530/ETJ-23-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age.</p><p><strong>Methods: </strong>To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development.</p><p><strong>Results: </strong>Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target.</p><p><strong>Conclusion: </strong>The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.</p>\",\"PeriodicalId\":12159,\"journal\":{\"name\":\"European Thyroid Journal\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Thyroid Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/ETJ-23-0049\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Thyroid Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/ETJ-23-0049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Activation of mitogen-activated protein kinase signaling and development of papillary thyroid carcinoma in thyroid-stimulating hormone receptor D633H knockin mice.
Objective: Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age.
Methods: To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development.
Results: Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target.
Conclusion: The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.
期刊介绍:
The ''European Thyroid Journal'' publishes papers reporting original research in basic, translational and clinical thyroidology. Original contributions cover all aspects of the field, from molecular and cellular biology to immunology and biochemistry, from physiology to pathology, and from pediatric to adult thyroid diseases with a special focus on thyroid cancer. Readers also benefit from reviews by noted experts, which highlight especially active areas of current research. The journal will further publish formal guidelines in the field, produced and endorsed by the European Thyroid Association.