黄连素负载热敏脂质纳米颗粒:体外表征、硅研究和体内抗关节炎作用。

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Liposome Research Pub Date : 2024-06-01 Epub Date: 2023-10-29 DOI:10.1080/08982104.2023.2273390
Heba A Gad, Haidy Abbas, Nesrine S El Sayed, Mohamed A Khattab, Mahmoud A El Hassab, Mai Mansour
{"title":"黄连素负载热敏脂质纳米颗粒:体外表征、硅研究和体内抗关节炎作用。","authors":"Heba A Gad, Haidy Abbas, Nesrine S El Sayed, Mohamed A Khattab, Mahmoud A El Hassab, Mai Mansour","doi":"10.1080/08982104.2023.2273390","DOIUrl":null,"url":null,"abstract":"<p><p>Thermoresponsive drug delivery systems have been used to treat diseases that cause hyperthermia or elevated body tissue temperatures, <i>viz.,</i> rheumatoid arthritis and different cancers. The aim of the study was to enhance berberine (BER) release using thermosensitive nanostructured lipid carriers (TNLCs) through intra-articular administration for the management of arthritis. TNLCs were prepared using binary mixtures of stearic acid and decanoic acid as solid and liquid lipids, respectively. Lipid mixtures with an optimum melting point were assessed using differential scanning calorimetry studies. <i>In vitro</i> characterization of the BER TNLCs included particle size, zeta potential, entrapment efficiency, and drug release at 37 °C and 41 °C. Joint diameter measurement, real-time polymerase chain reaction (RT-PC) analysis, enzyme-linked immunosorbent assay (ELISA) for inflammatory markers, and histological evaluation of the dissected joints were all performed <i>in vivo</i> on rats with adjuvant-induced arthritis. <i>In vitro</i> characterization revealed negatively charged BER-loaded TNLCs with a spherical shape, particle size less than 500 nm, BER entrapment efficiency up to 79%, and a high drug release rate at an elevated temperature of 41 °C. <i>In silico</i> studies revealed the affinity of BER to different formula components and to the measured biomarkers. <i>In vivo</i> assessment of the optimum TNLCs showed that BER TNLCs were superior to the BER solution suspension regarding their effect on inflammatory biomarkers, joint diameter, and histological studies.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"303-315"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berberine loaded thermosensitive lipid nanoparticles: <i>in vitro</i> characterization, <i>in silico</i> study, and <i>in vivo</i> anti-arthritic effect.\",\"authors\":\"Heba A Gad, Haidy Abbas, Nesrine S El Sayed, Mohamed A Khattab, Mahmoud A El Hassab, Mai Mansour\",\"doi\":\"10.1080/08982104.2023.2273390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermoresponsive drug delivery systems have been used to treat diseases that cause hyperthermia or elevated body tissue temperatures, <i>viz.,</i> rheumatoid arthritis and different cancers. The aim of the study was to enhance berberine (BER) release using thermosensitive nanostructured lipid carriers (TNLCs) through intra-articular administration for the management of arthritis. TNLCs were prepared using binary mixtures of stearic acid and decanoic acid as solid and liquid lipids, respectively. Lipid mixtures with an optimum melting point were assessed using differential scanning calorimetry studies. <i>In vitro</i> characterization of the BER TNLCs included particle size, zeta potential, entrapment efficiency, and drug release at 37 °C and 41 °C. Joint diameter measurement, real-time polymerase chain reaction (RT-PC) analysis, enzyme-linked immunosorbent assay (ELISA) for inflammatory markers, and histological evaluation of the dissected joints were all performed <i>in vivo</i> on rats with adjuvant-induced arthritis. <i>In vitro</i> characterization revealed negatively charged BER-loaded TNLCs with a spherical shape, particle size less than 500 nm, BER entrapment efficiency up to 79%, and a high drug release rate at an elevated temperature of 41 °C. <i>In silico</i> studies revealed the affinity of BER to different formula components and to the measured biomarkers. <i>In vivo</i> assessment of the optimum TNLCs showed that BER TNLCs were superior to the BER solution suspension regarding their effect on inflammatory biomarkers, joint diameter, and histological studies.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":\" \",\"pages\":\"303-315\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2023.2273390\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2023.2273390","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

热响应药物递送系统已被用于治疗导致体温过高或身体组织温度升高的疾病,即类风湿性关节炎和不同的癌症。本研究的目的是通过关节内给药,使用热敏纳米结构脂质载体(TNLC)增强黄连素(BER)的释放,以治疗关节炎。TNLC分别使用硬脂酸和癸酸的二元混合物作为固体和液体脂质制备。使用差示扫描量热法研究评估具有最佳熔点的脂质混合物。BER TNLC的体外表征包括粒径、ζ电位、包封效率和37时的药物释放 °C和41 °C。关节直径测量、实时聚合酶链式反应(RT-PC)分析、炎症标志物的酶联免疫吸附试验(ELISA)和解剖关节的组织学评估均在佐剂诱导的关节炎大鼠体内进行。体外表征显示,带负电荷的BER负载TNLC呈球形,粒径小于500 nm,BER包封率高达79%,在41的高温下具有高的药物释放率 °C。计算机研究揭示了BER对不同配方成分和测量的生物标志物的亲和力。最佳TNLC的体内评估表明,BER TNLC在炎症生物标志物、关节直径和组织学研究方面优于BER溶液悬浮液。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Berberine loaded thermosensitive lipid nanoparticles: in vitro characterization, in silico study, and in vivo anti-arthritic effect.

Thermoresponsive drug delivery systems have been used to treat diseases that cause hyperthermia or elevated body tissue temperatures, viz., rheumatoid arthritis and different cancers. The aim of the study was to enhance berberine (BER) release using thermosensitive nanostructured lipid carriers (TNLCs) through intra-articular administration for the management of arthritis. TNLCs were prepared using binary mixtures of stearic acid and decanoic acid as solid and liquid lipids, respectively. Lipid mixtures with an optimum melting point were assessed using differential scanning calorimetry studies. In vitro characterization of the BER TNLCs included particle size, zeta potential, entrapment efficiency, and drug release at 37 °C and 41 °C. Joint diameter measurement, real-time polymerase chain reaction (RT-PC) analysis, enzyme-linked immunosorbent assay (ELISA) for inflammatory markers, and histological evaluation of the dissected joints were all performed in vivo on rats with adjuvant-induced arthritis. In vitro characterization revealed negatively charged BER-loaded TNLCs with a spherical shape, particle size less than 500 nm, BER entrapment efficiency up to 79%, and a high drug release rate at an elevated temperature of 41 °C. In silico studies revealed the affinity of BER to different formula components and to the measured biomarkers. In vivo assessment of the optimum TNLCs showed that BER TNLCs were superior to the BER solution suspension regarding their effect on inflammatory biomarkers, joint diameter, and histological studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
期刊最新文献
Dual-ligand functionalized liposomes with iRGD/trastuzumab co-loaded with gefitinib and lycorine for enhanced metastatic breast cancer therapy. Responsiveness of glycyrrhetinic acid modified liposome toward secretory phospholipase A2 and its growth inhibitory in Colo205 cells. Preparation of sodium hyaluronate coated liposomes: effect of polymer molecular weight, coating concentration, amount of charged lipids and type of hydration medium on the stability. Cytoprotective effects of liposomal ganglioside GM1. The future of lactoferrin: A closer look at LipoDuo technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1