{"title":"用符号回归网络学习药效学协变量模型结构。","authors":"Ylva Wahlquist, Jesper Sundell, Kristian Soltesz","doi":"10.1007/s10928-023-09887-3","DOIUrl":null,"url":null,"abstract":"<p><p>Efficiently finding covariate model structures that minimize the need for random effects to describe pharmacological data is challenging. The standard approach focuses on identification of relevant covariates, and present methodology lacks tools for automatic identification of covariate model structures. Although neural networks could potentially be used to approximate covariate-parameter relationships, such approximations are not human-readable and come at the risk of poor generalizability due to high model complexity.In the present study, a novel methodology for the simultaneous selection of covariate model structure and optimization of its parameters is proposed. It is based on symbolic regression, posed as an optimization problem with a smooth loss function. This enables training of the model through back-propagation using efficient gradient computations.Feasibility and effectiveness are demonstrated by application to a clinical pharmacokinetic data set for propofol, containing infusion and blood sample time series from 1031 individuals. The resulting model is compared to a published state-of-the-art model for the same data set. Our methodology finds a covariate model structure and corresponding parameter values with a slightly better fit, while relying on notably fewer covariates than the state-of-the-art model. Unlike contemporary practice, finding the covariate model structure is achieved without an iterative procedure involving manual interactions.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"155-167"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416364/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learning pharmacometric covariate model structures with symbolic regression networks.\",\"authors\":\"Ylva Wahlquist, Jesper Sundell, Kristian Soltesz\",\"doi\":\"10.1007/s10928-023-09887-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficiently finding covariate model structures that minimize the need for random effects to describe pharmacological data is challenging. The standard approach focuses on identification of relevant covariates, and present methodology lacks tools for automatic identification of covariate model structures. Although neural networks could potentially be used to approximate covariate-parameter relationships, such approximations are not human-readable and come at the risk of poor generalizability due to high model complexity.In the present study, a novel methodology for the simultaneous selection of covariate model structure and optimization of its parameters is proposed. It is based on symbolic regression, posed as an optimization problem with a smooth loss function. This enables training of the model through back-propagation using efficient gradient computations.Feasibility and effectiveness are demonstrated by application to a clinical pharmacokinetic data set for propofol, containing infusion and blood sample time series from 1031 individuals. The resulting model is compared to a published state-of-the-art model for the same data set. Our methodology finds a covariate model structure and corresponding parameter values with a slightly better fit, while relying on notably fewer covariates than the state-of-the-art model. Unlike contemporary practice, finding the covariate model structure is achieved without an iterative procedure involving manual interactions.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\" \",\"pages\":\"155-167\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-023-09887-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-023-09887-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Learning pharmacometric covariate model structures with symbolic regression networks.
Efficiently finding covariate model structures that minimize the need for random effects to describe pharmacological data is challenging. The standard approach focuses on identification of relevant covariates, and present methodology lacks tools for automatic identification of covariate model structures. Although neural networks could potentially be used to approximate covariate-parameter relationships, such approximations are not human-readable and come at the risk of poor generalizability due to high model complexity.In the present study, a novel methodology for the simultaneous selection of covariate model structure and optimization of its parameters is proposed. It is based on symbolic regression, posed as an optimization problem with a smooth loss function. This enables training of the model through back-propagation using efficient gradient computations.Feasibility and effectiveness are demonstrated by application to a clinical pharmacokinetic data set for propofol, containing infusion and blood sample time series from 1031 individuals. The resulting model is compared to a published state-of-the-art model for the same data set. Our methodology finds a covariate model structure and corresponding parameter values with a slightly better fit, while relying on notably fewer covariates than the state-of-the-art model. Unlike contemporary practice, finding the covariate model structure is achieved without an iterative procedure involving manual interactions.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.