用于从单个不均匀和有噪声的ESPI相位模式进行相位展开的UN PUNet。

IF 1.4 3区 物理与天体物理 Q3 OPTICS Journal of The Optical Society of America A-optics Image Science and Vision Pub Date : 2023-10-01 DOI:10.1364/JOSAA.499453
Hongxuan He, Chen Tang, Liao Zhang, Min Xu, Zhenkun Lei
{"title":"用于从单个不均匀和有噪声的ESPI相位模式进行相位展开的UN PUNet。","authors":"Hongxuan He,&nbsp;Chen Tang,&nbsp;Liao Zhang,&nbsp;Min Xu,&nbsp;Zhenkun Lei","doi":"10.1364/JOSAA.499453","DOIUrl":null,"url":null,"abstract":"<p><p>The wrapped phase patterns of objects with varying materials exhibit uneven gray values. Phase unwrapping is a tricky problem from a single wrapped phase pattern in electronic speckle pattern interferometry (ESPI) due to the gray unevenness and noise. In this paper, we propose a convolutional neural network (CNN) model named UN-PUNet for phase unwrapping from a single wrapped phase pattern with uneven grayscale and noise. UN-PUNet leverages the benefits of a dual-branch encoder structure, a multi-scale feature fusion structure, a convolutional block attention module, and skip connections. Additionally, we have created an abundant dataset for phase unwrapping with varying degrees of unevenness, fringe density, and noise levels. We also propose a mixed loss function MS_SSIM + L2. Employing the proposed dataset and loss function, we can successfully train the UN-PUNet, ultimately realizing effective and robust phase unwrapping from a single uneven and noisy wrapped phase pattern. We evaluate the performance of our method on both simulated and experimental ESPI wrapped phase patterns, comparing it with DLPU, VUR-Net, and PU-M-Net. The unwrapping performance is assessed quantitatively and qualitatively. Furthermore, we conduct ablation experiments to evaluate the impact of different loss functions and the attention module utilized in our method. The results demonstrate that our proposed method outperforms the compared methods, eliminating the need for pre-processing, post-processing procedures, and parameter fine-tuning. Moreover, our method effectively solves the phase unwrapping problem while preserving the structure and shape, eliminating speckle noise, and addressing uneven grayscale.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UN-PUNet for phase unwrapping from a single uneven and noisy ESPI phase pattern.\",\"authors\":\"Hongxuan He,&nbsp;Chen Tang,&nbsp;Liao Zhang,&nbsp;Min Xu,&nbsp;Zhenkun Lei\",\"doi\":\"10.1364/JOSAA.499453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The wrapped phase patterns of objects with varying materials exhibit uneven gray values. Phase unwrapping is a tricky problem from a single wrapped phase pattern in electronic speckle pattern interferometry (ESPI) due to the gray unevenness and noise. In this paper, we propose a convolutional neural network (CNN) model named UN-PUNet for phase unwrapping from a single wrapped phase pattern with uneven grayscale and noise. UN-PUNet leverages the benefits of a dual-branch encoder structure, a multi-scale feature fusion structure, a convolutional block attention module, and skip connections. Additionally, we have created an abundant dataset for phase unwrapping with varying degrees of unevenness, fringe density, and noise levels. We also propose a mixed loss function MS_SSIM + L2. Employing the proposed dataset and loss function, we can successfully train the UN-PUNet, ultimately realizing effective and robust phase unwrapping from a single uneven and noisy wrapped phase pattern. We evaluate the performance of our method on both simulated and experimental ESPI wrapped phase patterns, comparing it with DLPU, VUR-Net, and PU-M-Net. The unwrapping performance is assessed quantitatively and qualitatively. Furthermore, we conduct ablation experiments to evaluate the impact of different loss functions and the attention module utilized in our method. The results demonstrate that our proposed method outperforms the compared methods, eliminating the need for pre-processing, post-processing procedures, and parameter fine-tuning. Moreover, our method effectively solves the phase unwrapping problem while preserving the structure and shape, eliminating speckle noise, and addressing uneven grayscale.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.499453\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.499453","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

具有不同材料的对象的包裹相位图案显示出不均匀的灰度值。在电子散斑干涉术(ESPI)中,由于灰度不均匀性和噪声,相位展开是一个棘手的问题。在本文中,我们提出了一个名为UN-PUNet的卷积神经网络(CNN)模型,用于从具有不均匀灰度和噪声的单个包裹相位模式中进行相位展开。UN PUNet利用了双分支编码器结构、多尺度特征融合结构、卷积块注意力模块和跳过连接的优势。此外,我们还创建了一个丰富的数据集,用于不同程度的不均匀性、条纹密度和噪声水平的相位展开。我们还提出了一个混合损失函数MS_SSIM+L2。利用所提出的数据集和损失函数,我们可以成功地训练UN PUNet,最终从单个不均匀和有噪声的包裹相位模式中实现有效和稳健的相位展开。我们评估了我们的方法在模拟和实验ESPI包裹相位模式上的性能,并将其与DLPU、VUR-Net和PU-M-Net进行了比较。对展开性能进行了定量和定性评估。此外,我们进行了消融实验,以评估不同损失函数和我们方法中使用的注意力模块的影响。结果表明,我们提出的方法优于比较方法,无需预处理、后处理程序和参数微调。此外,我们的方法有效地解决了相位展开问题,同时保留了结构和形状,消除了散斑噪声,并解决了灰度不均匀的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UN-PUNet for phase unwrapping from a single uneven and noisy ESPI phase pattern.

The wrapped phase patterns of objects with varying materials exhibit uneven gray values. Phase unwrapping is a tricky problem from a single wrapped phase pattern in electronic speckle pattern interferometry (ESPI) due to the gray unevenness and noise. In this paper, we propose a convolutional neural network (CNN) model named UN-PUNet for phase unwrapping from a single wrapped phase pattern with uneven grayscale and noise. UN-PUNet leverages the benefits of a dual-branch encoder structure, a multi-scale feature fusion structure, a convolutional block attention module, and skip connections. Additionally, we have created an abundant dataset for phase unwrapping with varying degrees of unevenness, fringe density, and noise levels. We also propose a mixed loss function MS_SSIM + L2. Employing the proposed dataset and loss function, we can successfully train the UN-PUNet, ultimately realizing effective and robust phase unwrapping from a single uneven and noisy wrapped phase pattern. We evaluate the performance of our method on both simulated and experimental ESPI wrapped phase patterns, comparing it with DLPU, VUR-Net, and PU-M-Net. The unwrapping performance is assessed quantitatively and qualitatively. Furthermore, we conduct ablation experiments to evaluate the impact of different loss functions and the attention module utilized in our method. The results demonstrate that our proposed method outperforms the compared methods, eliminating the need for pre-processing, post-processing procedures, and parameter fine-tuning. Moreover, our method effectively solves the phase unwrapping problem while preserving the structure and shape, eliminating speckle noise, and addressing uneven grayscale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
期刊最新文献
Estimating the time-evolving refractivity of a turbulent medium using optical beam measurements: a data assimilation approach. Evaluating the beam shape coefficients of Bessel-Gauss beams with radial quadrature: a comparison with angular spectrum decomposition and finite series methods. Improper statistics of the radiation from a randomly rotating source. Orientation-based solar noise impact on underwater and free-space optical wireless communication systems: experimental investigations. Routing light with different wavevectors using synthetic dimensions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1