PACAP-ADNP轴对营养因子剥夺诱导的SOD1G93A突变运动神经元死亡的神经保护作用。

IF 2.5 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM Neuropeptides Pub Date : 2023-10-11 DOI:10.1016/j.npep.2023.102386
Benedetta Magrì , Agata Grazia D'Amico , Grazia Maugeri , Giovanna Morello , Valentina La Cognata , Salvatore Saccone , Concetta Federico , Sebastiano Cavallaro , Velia D'Agata
{"title":"PACAP-ADNP轴对营养因子剥夺诱导的SOD1G93A突变运动神经元死亡的神经保护作用。","authors":"Benedetta Magrì ,&nbsp;Agata Grazia D'Amico ,&nbsp;Grazia Maugeri ,&nbsp;Giovanna Morello ,&nbsp;Valentina La Cognata ,&nbsp;Salvatore Saccone ,&nbsp;Concetta Federico ,&nbsp;Sebastiano Cavallaro ,&nbsp;Velia D'Agata","doi":"10.1016/j.npep.2023.102386","DOIUrl":null,"url":null,"abstract":"<div><p><span>Amyotrophic lateral Sclerosis (ALS) is a </span>neurodegenerative disease<span><span> characterized by progressive degeneration of motor neurons in the </span>central nervous system<span><span>. Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) account for approximately in 20% of familial ALS cases. The pathological mechanisms underlying the toxicity induced by mutated SOD1 are still unknown. However, it has been hypothesized that oxidative stress (OS) has a crucial role in motor neuron degeneration in ALS patients. Moreover, it has been described that SOD1 mutation interferes expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a protective key modulator against OS and </span>reactive oxygen species (ROS) formation.</span></span></p><p><span>The protective effect of pituitary adenylate cyclase-activating peptide (PACAP) has been demonstrated in various neurological disorders<span>, including ALS. Some of its effects are mediated by the stimulation of an intracellular factor known as activity-dependent protein (ADNP). The role of PACAP-ADNP axis on mutated SOD1 motor neuron degeneration has not been explored, yet. The present study aimed to investigate whether PACAP prevented apoptotic cell death induced by growth factor deprivation through ADNP activation and whether the </span></span>peptidergic axis can counteract the OS insult.</p><p>By using an in vitro model of ALS, we demonstrated that PACAP by binding to PAC1 receptor (PAC1R) prevented motor neuron death induced by serum deprivation through induction of the ADNP expression<span> via PKC stimulation. Furthermore, we have also demonstrated that the PACAP/ADNP axis counteracted ROS formation by inducing translocation of the Nfr2 from the cytoplasm to the nucleus. In conclusion, our study provides new insights regarding the protective role of PACAP-ADNP in ALS.</span></p></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective effect of the PACAP-ADNP axis on SOD1G93A mutant motor neuron death induced by trophic factors deprivation\",\"authors\":\"Benedetta Magrì ,&nbsp;Agata Grazia D'Amico ,&nbsp;Grazia Maugeri ,&nbsp;Giovanna Morello ,&nbsp;Valentina La Cognata ,&nbsp;Salvatore Saccone ,&nbsp;Concetta Federico ,&nbsp;Sebastiano Cavallaro ,&nbsp;Velia D'Agata\",\"doi\":\"10.1016/j.npep.2023.102386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Amyotrophic lateral Sclerosis (ALS) is a </span>neurodegenerative disease<span><span> characterized by progressive degeneration of motor neurons in the </span>central nervous system<span><span>. Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) account for approximately in 20% of familial ALS cases. The pathological mechanisms underlying the toxicity induced by mutated SOD1 are still unknown. However, it has been hypothesized that oxidative stress (OS) has a crucial role in motor neuron degeneration in ALS patients. Moreover, it has been described that SOD1 mutation interferes expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a protective key modulator against OS and </span>reactive oxygen species (ROS) formation.</span></span></p><p><span>The protective effect of pituitary adenylate cyclase-activating peptide (PACAP) has been demonstrated in various neurological disorders<span>, including ALS. Some of its effects are mediated by the stimulation of an intracellular factor known as activity-dependent protein (ADNP). The role of PACAP-ADNP axis on mutated SOD1 motor neuron degeneration has not been explored, yet. The present study aimed to investigate whether PACAP prevented apoptotic cell death induced by growth factor deprivation through ADNP activation and whether the </span></span>peptidergic axis can counteract the OS insult.</p><p>By using an in vitro model of ALS, we demonstrated that PACAP by binding to PAC1 receptor (PAC1R) prevented motor neuron death induced by serum deprivation through induction of the ADNP expression<span> via PKC stimulation. Furthermore, we have also demonstrated that the PACAP/ADNP axis counteracted ROS formation by inducing translocation of the Nfr2 from the cytoplasm to the nucleus. In conclusion, our study provides new insights regarding the protective role of PACAP-ADNP in ALS.</span></p></div>\",\"PeriodicalId\":19254,\"journal\":{\"name\":\"Neuropeptides\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropeptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143417923000677\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000677","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

肌萎缩侧索硬化症(ALS)是一种以中枢神经系统运动神经元进行性变性为特征的神经退行性疾病。编码Cu/Zn超氧化物歧化酶(SOD1)的基因突变约占家族性ALS病例的20%。突变SOD1引起毒性的病理机制尚不清楚。然而,有人假设氧化应激(OS)在ALS患者的运动神经元变性中起着至关重要的作用。此外,已经描述了SOD1突变干扰核因子红系2相关因子2(Nrf2)的表达,Nrf2是对抗OS和活性氧(ROS)形成的保护性关键调节剂。垂体腺苷酸环化酶激活肽(PACAP)的保护作用已在包括ALS在内的各种神经系统疾病中得到证实。它的一些作用是由一种被称为活性依赖蛋白(ADNP)的细胞内因子的刺激介导的。PACAP-ADNP轴在突变的SOD1运动神经元变性中的作用尚未被探索。本研究旨在探讨PACAP是否通过ADNP激活阻止生长因子剥夺诱导的细胞凋亡,以及肽能轴是否可以抵消OS损伤。通过使用ALS的体外模型,我们证明了PACAP通过与PAC1受体(PAC1R)结合,通过PKC刺激诱导ADNP的表达,防止了血清剥夺诱导的运动神经元死亡。此外,我们还证明了PACAP/ADNP轴通过诱导Nfr2从细胞质向细胞核的易位来对抗ROS的形成。总之,我们的研究为PACAP-ADNP在ALS中的保护作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuroprotective effect of the PACAP-ADNP axis on SOD1G93A mutant motor neuron death induced by trophic factors deprivation

Amyotrophic lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons in the central nervous system. Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) account for approximately in 20% of familial ALS cases. The pathological mechanisms underlying the toxicity induced by mutated SOD1 are still unknown. However, it has been hypothesized that oxidative stress (OS) has a crucial role in motor neuron degeneration in ALS patients. Moreover, it has been described that SOD1 mutation interferes expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a protective key modulator against OS and reactive oxygen species (ROS) formation.

The protective effect of pituitary adenylate cyclase-activating peptide (PACAP) has been demonstrated in various neurological disorders, including ALS. Some of its effects are mediated by the stimulation of an intracellular factor known as activity-dependent protein (ADNP). The role of PACAP-ADNP axis on mutated SOD1 motor neuron degeneration has not been explored, yet. The present study aimed to investigate whether PACAP prevented apoptotic cell death induced by growth factor deprivation through ADNP activation and whether the peptidergic axis can counteract the OS insult.

By using an in vitro model of ALS, we demonstrated that PACAP by binding to PAC1 receptor (PAC1R) prevented motor neuron death induced by serum deprivation through induction of the ADNP expression via PKC stimulation. Furthermore, we have also demonstrated that the PACAP/ADNP axis counteracted ROS formation by inducing translocation of the Nfr2 from the cytoplasm to the nucleus. In conclusion, our study provides new insights regarding the protective role of PACAP-ADNP in ALS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropeptides
Neuropeptides 医学-内分泌学与代谢
CiteScore
5.40
自引率
6.90%
发文量
55
审稿时长
>12 weeks
期刊介绍: The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.
期刊最新文献
Physiologically relevant lactate accumulation from exercise or peripheral injection does not alter central or peripheral appetite signaling in mice GnRH protective effects against long-term potentiation impairment induced by AANAT-siRNA Editorial Board Phosphorylated NPY1R regulates phenotypic transition of vascular smooth muscle cells, inflammatory response and macrophage infiltration to promote intracranial aneurysm progression The restraint stress-induced antinociceptive effects decreased by antagonism of both orexin receptors within the CA1 region of the hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1