{"title":"从变形胚胎细胞到肿瘤学:上皮-间充质转化的迷人历史。","authors":"Rosemary J. Akhurst","doi":"10.1016/j.semcancer.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Epithelial-to-mesenchymal transition or transformation (EMT) is a cell shape-changing process that is utilized repeatedly throughout embryogenesis and is critical to the attainment of a precise body plan. In the adult, EMT is observed under both normal and pathological conditions, such as during normal wounding healing, during development of certain fibrotic states and vascular anomalies, as well as in some cancers when malignant cells progress to become more aggressive, invasive, and metastatic. Epithelia derived from any of the three embryonic germ layers can undergo EMT, including those derived from mesoderm, such as endothelial cells (sometimes termed Endo-MT) and those derived from endoderm such as fetal liver stroma. At the cellular level, EMT is defined as the transformation of epithelial cells towards a mesenchymal phenotype and is marked by attenuation of expression of epithelial markers and <em>de novo</em> expression of mesenchymal markers. This process is induced by extracellular factors and can be reversible, resulting in mesenchymal-to-epithelial transformation (MET). It is now clear that a cell can simultaneously express properties of both epithelia and mesenchyme, and that such transitional cell-types drive tumor cell heterogeneity, an important aspect of cancer progression, development of a stem-like cell state, and drug resistance. Here we review some of the earliest studies demonstrating the existence of EMT during embryogenesis and discuss the discovery of the extracellular factors and intracellular signaling pathways that contribute to this process, with components of the TGFβ signaling superfamily playing a prominent role. We mention early controversies surrounding <em>in vivo</em> EMT during embryonic development and in adult diseased states, and the maturation of the field to a stage wherein targeting EMT to control disease states is an aspirational goal.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From shape-shifting embryonic cells to oncology: The fascinating history of epithelial mesenchymal transition\",\"authors\":\"Rosemary J. Akhurst\",\"doi\":\"10.1016/j.semcancer.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epithelial-to-mesenchymal transition or transformation (EMT) is a cell shape-changing process that is utilized repeatedly throughout embryogenesis and is critical to the attainment of a precise body plan. In the adult, EMT is observed under both normal and pathological conditions, such as during normal wounding healing, during development of certain fibrotic states and vascular anomalies, as well as in some cancers when malignant cells progress to become more aggressive, invasive, and metastatic. Epithelia derived from any of the three embryonic germ layers can undergo EMT, including those derived from mesoderm, such as endothelial cells (sometimes termed Endo-MT) and those derived from endoderm such as fetal liver stroma. At the cellular level, EMT is defined as the transformation of epithelial cells towards a mesenchymal phenotype and is marked by attenuation of expression of epithelial markers and <em>de novo</em> expression of mesenchymal markers. This process is induced by extracellular factors and can be reversible, resulting in mesenchymal-to-epithelial transformation (MET). It is now clear that a cell can simultaneously express properties of both epithelia and mesenchyme, and that such transitional cell-types drive tumor cell heterogeneity, an important aspect of cancer progression, development of a stem-like cell state, and drug resistance. Here we review some of the earliest studies demonstrating the existence of EMT during embryogenesis and discuss the discovery of the extracellular factors and intracellular signaling pathways that contribute to this process, with components of the TGFβ signaling superfamily playing a prominent role. We mention early controversies surrounding <em>in vivo</em> EMT during embryonic development and in adult diseased states, and the maturation of the field to a stage wherein targeting EMT to control disease states is an aspirational goal.</p></div>\",\"PeriodicalId\":21594,\"journal\":{\"name\":\"Seminars in cancer biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cancer biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044579X23001323\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X23001323","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
From shape-shifting embryonic cells to oncology: The fascinating history of epithelial mesenchymal transition
Epithelial-to-mesenchymal transition or transformation (EMT) is a cell shape-changing process that is utilized repeatedly throughout embryogenesis and is critical to the attainment of a precise body plan. In the adult, EMT is observed under both normal and pathological conditions, such as during normal wounding healing, during development of certain fibrotic states and vascular anomalies, as well as in some cancers when malignant cells progress to become more aggressive, invasive, and metastatic. Epithelia derived from any of the three embryonic germ layers can undergo EMT, including those derived from mesoderm, such as endothelial cells (sometimes termed Endo-MT) and those derived from endoderm such as fetal liver stroma. At the cellular level, EMT is defined as the transformation of epithelial cells towards a mesenchymal phenotype and is marked by attenuation of expression of epithelial markers and de novo expression of mesenchymal markers. This process is induced by extracellular factors and can be reversible, resulting in mesenchymal-to-epithelial transformation (MET). It is now clear that a cell can simultaneously express properties of both epithelia and mesenchyme, and that such transitional cell-types drive tumor cell heterogeneity, an important aspect of cancer progression, development of a stem-like cell state, and drug resistance. Here we review some of the earliest studies demonstrating the existence of EMT during embryogenesis and discuss the discovery of the extracellular factors and intracellular signaling pathways that contribute to this process, with components of the TGFβ signaling superfamily playing a prominent role. We mention early controversies surrounding in vivo EMT during embryonic development and in adult diseased states, and the maturation of the field to a stage wherein targeting EMT to control disease states is an aspirational goal.
期刊介绍:
Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field.
The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies.
To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area.
The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.