无机砷介导的TUG1上调通过激活p53信号通路促进人支气管上皮细胞凋亡。

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Toxicology and Industrial Health Pub Date : 2023-12-01 Epub Date: 2023-10-20 DOI:10.1177/07482337231209349
Qian Chen, Mingjun Sun, Huirong Cheng, Jun Qi, Jingwen Tan, Yun Gu, Tianle Yu, Ming Li, Hao Xu, Yuefeng He, Weihua Wen
{"title":"无机砷介导的TUG1上调通过激活p53信号通路促进人支气管上皮细胞凋亡。","authors":"Qian Chen, Mingjun Sun, Huirong Cheng, Jun Qi, Jingwen Tan, Yun Gu, Tianle Yu, Ming Li, Hao Xu, Yuefeng He, Weihua Wen","doi":"10.1177/07482337231209349","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to arsenic, an environmental contaminant, is known to cause arsenicosis and cancer. Although considerable research has been conducted to understand the underlying mechanism responsible for arsenic-induced cancers, the precise molecular mechanisms remain unknown, especially at the epigenetic regulation level. Long non-coding RNAs (LncRNAs) that have been shown to mediate various biological processes, including proliferation, apoptosis, necrosis, and mutagenesis. There are few studies on LncRNAs and biological damage caused by environmental pollutants. The LncRNAs taurine upregulated gene 1 (TUG1) regulates cell growth both in vitro and in vivo, and contributes its oncogenic role. However, the precise roles and related mechanisms of arsenic-induced cell apoptosis are still not fully understood owing to controversial findings in the literature. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed higher expression levels of TUG1 in people occupationally exposed to arsenic than in individuals living away from the source of arsenic exosure (<i>N</i> = 25). In addition, the results suggested that TUG1 was involved in arsenic-induced apoptosis. Furthermore, knockdown experiments showed that silencing of TUG1 markedly inhibited proliferation, whereas depletion of TUG1 led to increased apoptosis. The TUG1-small interfering RNA (siRNA) combination with arsenic (3 μM/L) slightly increased apoptosis compared with the TUG1-siRNA. Additionally, the knockdown experiments showed that the silencing of TUG1 by siRNA inhibited proliferation and promoted apoptosis by inducing p53, p-p53 (ser392), FAS, BCL2, MDM2, cleaved-caspase7 proteins in 16HBE cells. These results indicated that arsenic mediates the upregulation of TUG1 and induces cell apoptosis via activating the p53 signaling pathway.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"700-711"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inorganic arsenic-mediated upregulation of TUG1 promotes apoptosis in human bronchial epithelial cells by activating the p53 signaling pathway.\",\"authors\":\"Qian Chen, Mingjun Sun, Huirong Cheng, Jun Qi, Jingwen Tan, Yun Gu, Tianle Yu, Ming Li, Hao Xu, Yuefeng He, Weihua Wen\",\"doi\":\"10.1177/07482337231209349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to arsenic, an environmental contaminant, is known to cause arsenicosis and cancer. Although considerable research has been conducted to understand the underlying mechanism responsible for arsenic-induced cancers, the precise molecular mechanisms remain unknown, especially at the epigenetic regulation level. Long non-coding RNAs (LncRNAs) that have been shown to mediate various biological processes, including proliferation, apoptosis, necrosis, and mutagenesis. There are few studies on LncRNAs and biological damage caused by environmental pollutants. The LncRNAs taurine upregulated gene 1 (TUG1) regulates cell growth both in vitro and in vivo, and contributes its oncogenic role. However, the precise roles and related mechanisms of arsenic-induced cell apoptosis are still not fully understood owing to controversial findings in the literature. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed higher expression levels of TUG1 in people occupationally exposed to arsenic than in individuals living away from the source of arsenic exosure (<i>N</i> = 25). In addition, the results suggested that TUG1 was involved in arsenic-induced apoptosis. Furthermore, knockdown experiments showed that silencing of TUG1 markedly inhibited proliferation, whereas depletion of TUG1 led to increased apoptosis. The TUG1-small interfering RNA (siRNA) combination with arsenic (3 μM/L) slightly increased apoptosis compared with the TUG1-siRNA. Additionally, the knockdown experiments showed that the silencing of TUG1 by siRNA inhibited proliferation and promoted apoptosis by inducing p53, p-p53 (ser392), FAS, BCL2, MDM2, cleaved-caspase7 proteins in 16HBE cells. These results indicated that arsenic mediates the upregulation of TUG1 and induces cell apoptosis via activating the p53 signaling pathway.</p>\",\"PeriodicalId\":23171,\"journal\":{\"name\":\"Toxicology and Industrial Health\",\"volume\":\" \",\"pages\":\"700-711\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and Industrial Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/07482337231209349\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337231209349","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,接触砷这种环境污染物会导致砷中毒和癌症。尽管已经进行了大量的研究来了解砷诱导癌症的潜在机制,但确切的分子机制仍然未知,尤其是在表观遗传学调控水平上。长非编码RNA(LncRNA)已被证明可介导各种生物学过程,包括增殖、细胞凋亡、坏死和突变。关于lncRNA和环境污染物引起的生物损伤的研究很少。LncRNAs牛磺酸上调基因1(TUG1)在体外和体内调节细胞生长,并参与其致癌作用。然而,由于文献中有争议的发现,砷诱导细胞凋亡的确切作用和相关机制仍不完全清楚。在这项研究中,定量实时聚合酶链式反应(qRT-PCR)分析显示,职业性接触砷的人的TUG1表达水平高于远离砷外泌物来源的人(N=25)。此外,研究结果表明TUG1参与了砷诱导的细胞凋亡。此外,敲除实验表明,TUG1的沉默显著抑制增殖,而TUG1的缺失导致细胞凋亡增加。与TUG1 siRNA相比,TUG1小干扰RNA(siRNA)与砷(3μM/L)的组合略微增加了细胞凋亡。此外,敲除实验表明,siRNA对TUG1的沉默通过诱导16HBE细胞中的p53、p-p53(ser392)、FAS、BCL2、MDM2、切割的caspase7蛋白来抑制增殖并促进细胞凋亡。这些结果表明,砷通过激活p53信号通路介导TUG1的上调并诱导细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inorganic arsenic-mediated upregulation of TUG1 promotes apoptosis in human bronchial epithelial cells by activating the p53 signaling pathway.

Exposure to arsenic, an environmental contaminant, is known to cause arsenicosis and cancer. Although considerable research has been conducted to understand the underlying mechanism responsible for arsenic-induced cancers, the precise molecular mechanisms remain unknown, especially at the epigenetic regulation level. Long non-coding RNAs (LncRNAs) that have been shown to mediate various biological processes, including proliferation, apoptosis, necrosis, and mutagenesis. There are few studies on LncRNAs and biological damage caused by environmental pollutants. The LncRNAs taurine upregulated gene 1 (TUG1) regulates cell growth both in vitro and in vivo, and contributes its oncogenic role. However, the precise roles and related mechanisms of arsenic-induced cell apoptosis are still not fully understood owing to controversial findings in the literature. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed higher expression levels of TUG1 in people occupationally exposed to arsenic than in individuals living away from the source of arsenic exosure (N = 25). In addition, the results suggested that TUG1 was involved in arsenic-induced apoptosis. Furthermore, knockdown experiments showed that silencing of TUG1 markedly inhibited proliferation, whereas depletion of TUG1 led to increased apoptosis. The TUG1-small interfering RNA (siRNA) combination with arsenic (3 μM/L) slightly increased apoptosis compared with the TUG1-siRNA. Additionally, the knockdown experiments showed that the silencing of TUG1 by siRNA inhibited proliferation and promoted apoptosis by inducing p53, p-p53 (ser392), FAS, BCL2, MDM2, cleaved-caspase7 proteins in 16HBE cells. These results indicated that arsenic mediates the upregulation of TUG1 and induces cell apoptosis via activating the p53 signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
72
审稿时长
4 months
期刊介绍: Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.
期刊最新文献
Transcriptome analysis reveals the molecular mechanisms of neonicotinoid acetamiprid in Leydig cells. Perfluorooctane sulfonate causes HK-2 cell injury through ferroptosis and endoplasmic reticulum stress pathways. Wnt5a promotes Kupffer cell activation in trichloroethylene-induced immune liver injury. Metabolomics reveals that phosphatidylethanolamine can alleviate the toxicity of silica nanoparticles in human lung A549 cells. DEHP impairs the oxidative stress response and disrupts trace element and mineral metabolism within the mitochondria of detoxification organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1