用于发作脑电图信号检测的EMD/VMD分解方法的非线性和混沌特征。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-11-01 Epub Date: 2023-10-20 DOI:10.1080/10255842.2023.2271603
Rafik Djemili, Ilyes Djemili
{"title":"用于发作脑电图信号检测的EMD/VMD分解方法的非线性和混沌特征。","authors":"Rafik Djemili, Ilyes Djemili","doi":"10.1080/10255842.2023.2271603","DOIUrl":null,"url":null,"abstract":"<p><p>The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"2091-2110"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection.\",\"authors\":\"Rafik Djemili, Ilyes Djemili\",\"doi\":\"10.1080/10255842.2023.2271603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"2091-2110\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2271603\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2271603","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

癫痫发作的检测和识别引起了神经生理学家的极大关注。为了实现对癫痫发作或等效发作EEG状态的检测,本文提出了使用通常没有在原始EEG信号上计算的非线性和混沌特征,而是在应用基于经验模式分解(EMD)和变分模式分解(VMD)方法的新的时频信号分解方法之后提取的固有模式函数(IMF)上。所提出的方法中的第一步是通过EMD和VMD分解方法在时间EEG片段上提取IMF的各个分量。Hjorth参数、Hurst指数、递归量化分析(RQA)、去趋势波动分析(DFA)、最大李雅普诺夫指数(LLE)、Higuchi和Katz分维(HFD和KFD),研究了在IMF上计算的七个非线性和混沌特征,并使用k近邻(KNN)和多层感知器神经网络(MLPNN)分类器评估了它们的分类性能。此外,还从灵敏度、特异性和总体分类准确性方面检验了最佳非线性特征的组合。已使用公开可用的波恩脑电图数据集来验证所提出的从正常或发作间期脑电图片段检测发作期脑电图信号的方法的有效性。在本研究涉及的几个实验中,最终结果表明,对于所研究的六种不同的癫痫发作检测案例问题,总体分类准确率分别可以达到100%、99.45%、99.8%、99.8%和98.6%,证实了所提出的方法在帮助癫痫检测护理单元的临床从业者非常有信心地对癫痫事件进行分类方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection.

The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
The use of finite element models for backface deformation and body armour design: a systematic review. Significance of peripheral layer: the case of mucus flow through a ciliated tube using Rabinowitsch model. A high-fidelity biomechanical modeling framework for injury prediction during frontal car crash. Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability. Research on MI EEG signal classification algorithm using multi-model fusion strategy coupling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1