Han Li , Jianping Huang , Xinbo Lian , Yingjie Zhao , Wei Yan , Li Zhang , Licheng Li
{"title":"假日期间人员流动对疫情传播的影响","authors":"Han Li , Jianping Huang , Xinbo Lian , Yingjie Zhao , Wei Yan , Li Zhang , Licheng Li","doi":"10.1016/j.idm.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>COVID-19 has posed formidable challenges as a significant global health crisis. Its complexity stems from factors like viral contagiousness, population density, social behaviors, governmental regulations, and environmental conditions, with interpersonal interactions and large-scale activities being particularly pivotal. To unravel these complexities, we used a modified SEIR epidemiological model to simulate various outbreak scenarios during the holiday season, incorporating both inter-regional and intra-regional human mobility effects into the parameterization scheme. In addition, evaluation metrics were used to evaluate the accuracy of the model simulation by comparing the congruence between simulated results and recorded confirmed cases. The findings suggested that intra-city mobility led to an average surge of 57.35% in confirmed cases of China, while inter-city mobility contributed to an average increase of 15.18%. In the simulation for Tianjin, China, a one-week delay in human mobility attenuated the peak number of cases by 34.47% and postponed the peak time by 6 days. The simulation for the United States revealed that human mobility played a more pronounced part in the outbreak, with a notable disparity in peak cases when mobility was considered. This study highlights that while inter-regional mobility acted as a trigger for the epidemic spread, the diffusion effect of intra-regional mobility was primarily responsible for the outbreak. We have a better understanding on how human mobility and infectious disease epidemics interact, and provide empirical evidence that could contribute to disease prevention and control measures.</p></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/3f/main.PMC10582379.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of human mobility on the epidemic spread during holidays\",\"authors\":\"Han Li , Jianping Huang , Xinbo Lian , Yingjie Zhao , Wei Yan , Li Zhang , Licheng Li\",\"doi\":\"10.1016/j.idm.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>COVID-19 has posed formidable challenges as a significant global health crisis. Its complexity stems from factors like viral contagiousness, population density, social behaviors, governmental regulations, and environmental conditions, with interpersonal interactions and large-scale activities being particularly pivotal. To unravel these complexities, we used a modified SEIR epidemiological model to simulate various outbreak scenarios during the holiday season, incorporating both inter-regional and intra-regional human mobility effects into the parameterization scheme. In addition, evaluation metrics were used to evaluate the accuracy of the model simulation by comparing the congruence between simulated results and recorded confirmed cases. The findings suggested that intra-city mobility led to an average surge of 57.35% in confirmed cases of China, while inter-city mobility contributed to an average increase of 15.18%. In the simulation for Tianjin, China, a one-week delay in human mobility attenuated the peak number of cases by 34.47% and postponed the peak time by 6 days. The simulation for the United States revealed that human mobility played a more pronounced part in the outbreak, with a notable disparity in peak cases when mobility was considered. This study highlights that while inter-regional mobility acted as a trigger for the epidemic spread, the diffusion effect of intra-regional mobility was primarily responsible for the outbreak. We have a better understanding on how human mobility and infectious disease epidemics interact, and provide empirical evidence that could contribute to disease prevention and control measures.</p></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/3f/main.PMC10582379.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468042723000866\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042723000866","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Impact of human mobility on the epidemic spread during holidays
COVID-19 has posed formidable challenges as a significant global health crisis. Its complexity stems from factors like viral contagiousness, population density, social behaviors, governmental regulations, and environmental conditions, with interpersonal interactions and large-scale activities being particularly pivotal. To unravel these complexities, we used a modified SEIR epidemiological model to simulate various outbreak scenarios during the holiday season, incorporating both inter-regional and intra-regional human mobility effects into the parameterization scheme. In addition, evaluation metrics were used to evaluate the accuracy of the model simulation by comparing the congruence between simulated results and recorded confirmed cases. The findings suggested that intra-city mobility led to an average surge of 57.35% in confirmed cases of China, while inter-city mobility contributed to an average increase of 15.18%. In the simulation for Tianjin, China, a one-week delay in human mobility attenuated the peak number of cases by 34.47% and postponed the peak time by 6 days. The simulation for the United States revealed that human mobility played a more pronounced part in the outbreak, with a notable disparity in peak cases when mobility was considered. This study highlights that while inter-regional mobility acted as a trigger for the epidemic spread, the diffusion effect of intra-regional mobility was primarily responsible for the outbreak. We have a better understanding on how human mobility and infectious disease epidemics interact, and provide empirical evidence that could contribute to disease prevention and control measures.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.