Thibault Vervenne , Lauranne Maes , Lucas Van Hoof , Filip Rega , Nele Famaey
{"title":"血管生长和重塑的驱动因素:促进罗斯手术中良性适应的计算框架。","authors":"Thibault Vervenne , Lauranne Maes , Lucas Van Hoof , Filip Rega , Nele Famaey","doi":"10.1016/j.jmbbm.2023.106170","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In the sixties, Dr Donald Ross designed a surgical solution for young patients with aortic valve disease by using the patients’ own pulmonary valve. The Ross procedure is the only aortic valve replacement technique that can restore long-term survival and preserve quality of life. The main failure mode of the Ross procedure is wall dilatation, potentially leading to valve regurgitation and leakage. Dilatation occurs due to the inability of the pulmonary autograft to adapt to the sudden increase in loading when exposing to aortic pressures. Previous experimental data has shown that a permanent external support wrapped around the artery can prevent the acute dilatation of the arterial wall. However, the textile support leads to stress-shielding phenomena due to the loss of mechanical wall compliance. We present a pragmatic and modular computational framework of arterial growth and remodeling predicting the long-term outcomes of cardiovascular tissue adaptation, with and without textile wrapping. The model integrates mean, systolic and </span>diastolic pressures and assumes the resulting wall stresses to drive the biological remodeling rules. Rather than a single mean pressure or stress deviation from the homeostatic state, we demonstrate that only pulsatile stresses can predict available experimental results. Therefore, we suggest that a biodegradable external support could induce benign remodeling in the Ross procedure. Indeed, a biodegradable textile wrapped around the autograft fulfills the trade-off between prevention of acute dilatation on the one hand and recovery of arterial wall compliance on the other hand. After further validation, the computational framework can set the basis for the development of an actual biodegradable external support for the Ross procedure with optimized polymer </span>mechanical properties and degradation behavior.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"148 ","pages":"Article 106170"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drivers of vascular growth and remodeling: A computational framework to promote benign adaptation in the Ross procedure\",\"authors\":\"Thibault Vervenne , Lauranne Maes , Lucas Van Hoof , Filip Rega , Nele Famaey\",\"doi\":\"10.1016/j.jmbbm.2023.106170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>In the sixties, Dr Donald Ross designed a surgical solution for young patients with aortic valve disease by using the patients’ own pulmonary valve. The Ross procedure is the only aortic valve replacement technique that can restore long-term survival and preserve quality of life. The main failure mode of the Ross procedure is wall dilatation, potentially leading to valve regurgitation and leakage. Dilatation occurs due to the inability of the pulmonary autograft to adapt to the sudden increase in loading when exposing to aortic pressures. Previous experimental data has shown that a permanent external support wrapped around the artery can prevent the acute dilatation of the arterial wall. However, the textile support leads to stress-shielding phenomena due to the loss of mechanical wall compliance. We present a pragmatic and modular computational framework of arterial growth and remodeling predicting the long-term outcomes of cardiovascular tissue adaptation, with and without textile wrapping. The model integrates mean, systolic and </span>diastolic pressures and assumes the resulting wall stresses to drive the biological remodeling rules. Rather than a single mean pressure or stress deviation from the homeostatic state, we demonstrate that only pulsatile stresses can predict available experimental results. Therefore, we suggest that a biodegradable external support could induce benign remodeling in the Ross procedure. Indeed, a biodegradable textile wrapped around the autograft fulfills the trade-off between prevention of acute dilatation on the one hand and recovery of arterial wall compliance on the other hand. After further validation, the computational framework can set the basis for the development of an actual biodegradable external support for the Ross procedure with optimized polymer </span>mechanical properties and degradation behavior.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"148 \",\"pages\":\"Article 106170\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616123005234\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616123005234","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Drivers of vascular growth and remodeling: A computational framework to promote benign adaptation in the Ross procedure
In the sixties, Dr Donald Ross designed a surgical solution for young patients with aortic valve disease by using the patients’ own pulmonary valve. The Ross procedure is the only aortic valve replacement technique that can restore long-term survival and preserve quality of life. The main failure mode of the Ross procedure is wall dilatation, potentially leading to valve regurgitation and leakage. Dilatation occurs due to the inability of the pulmonary autograft to adapt to the sudden increase in loading when exposing to aortic pressures. Previous experimental data has shown that a permanent external support wrapped around the artery can prevent the acute dilatation of the arterial wall. However, the textile support leads to stress-shielding phenomena due to the loss of mechanical wall compliance. We present a pragmatic and modular computational framework of arterial growth and remodeling predicting the long-term outcomes of cardiovascular tissue adaptation, with and without textile wrapping. The model integrates mean, systolic and diastolic pressures and assumes the resulting wall stresses to drive the biological remodeling rules. Rather than a single mean pressure or stress deviation from the homeostatic state, we demonstrate that only pulsatile stresses can predict available experimental results. Therefore, we suggest that a biodegradable external support could induce benign remodeling in the Ross procedure. Indeed, a biodegradable textile wrapped around the autograft fulfills the trade-off between prevention of acute dilatation on the one hand and recovery of arterial wall compliance on the other hand. After further validation, the computational framework can set the basis for the development of an actual biodegradable external support for the Ross procedure with optimized polymer mechanical properties and degradation behavior.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.