Zikun Yang, Xiangfeng Peng, Jingxuan Zheng and Zhao Wang
{"title":"等离子体合成富含氧空位的CuO/Cu2(OH)3NO3异质结构纳米片以提高降解性能。","authors":"Zikun Yang, Xiangfeng Peng, Jingxuan Zheng and Zhao Wang","doi":"10.1039/D3CP03918H","DOIUrl":null,"url":null,"abstract":"<p >Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> was achieved by fixing nitrogen in air as NO<small><sub>3</sub></small><small><sup>−</sup></small> using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> structure. CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O<small><sub>2</sub></small><small><sup>−</sup></small> and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 29108-29119"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma synthesis of oxygen vacancy-rich CuO/Cu2(OH)3NO3 heterostructure nanosheets for boosting degradation performance†\",\"authors\":\"Zikun Yang, Xiangfeng Peng, Jingxuan Zheng and Zhao Wang\",\"doi\":\"10.1039/D3CP03918H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> was achieved by fixing nitrogen in air as NO<small><sub>3</sub></small><small><sup>−</sup></small> using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> structure. CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O<small><sub>2</sub></small><small><sup>−</sup></small> and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 42\",\"pages\":\" 29108-29119\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03918h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03918h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Plasma synthesis of oxygen vacancy-rich CuO/Cu2(OH)3NO3 heterostructure nanosheets for boosting degradation performance†
Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu2(OH)3NO3 was achieved by fixing nitrogen in air as NO3− using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu2(OH)3NO3 nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu2(OH)3NO3 structure. CuO/Cu2(OH)3NO3 using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu2(OH)3NO3 using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O2− and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.