{"title":"一种独特的基于人工智能的工具,用于下颌切牙管的CBCT自动分割。","authors":"Thanatchaporn Jindanil, Luiz Eduardo Marinho-Vieira, Sergio Lins de-Azevedo-Vaz, Reinhilde Jacobs","doi":"10.1259/dmfr.20230321","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate a novel artificial intelligence (AI) tool for automated segmentation of mandibular incisive canal on cone beam computed tomography (CBCT) scans.</p><p><strong>Methods: </strong>After ethical approval, a data set of 200 CBCT scans were selected and categorized into training (160), validation (20), and test (20) sets. CBCT scans were imported into Virtual Patient Creator and ground truth for training and validation were manually segmented by three oral radiologists in multiplanar reconstructions. Intra- and interobserver analysis for human segmentation variability was performed on 20% of the data set. Segmentations were imported into Mimics for standardization. Resulting files were imported to 3-Matic for analysis using surface- and voxel-based methods. Evaluation metrics involved time efficiency, analysis metrics including Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Root mean square error (RMSE), precision, recall, accuracy, and consistency. These values were calculated considering AI-based segmentation and refined-AI segmentation compared to manual segmentation.</p><p><strong>Results: </strong>Average time for AI-based segmentation, refined-AI segmentation and manual segmentation was 00:10, 08:09, and 47:18 (284-fold time reduction). AI-based segmentation showed mean values of DSC 0.873, IoU 0.775, RMSE 0.256 mm, precision 0.837 and recall 0.890 while refined-AI segmentation provided DSC 0.876, IoU 0.781, RMSE 0.267 mm, precision 0. 852 and recall 0.902 with the accuracy of 0.998 for both methods. The consistency was one for AI-based segmentation and 0.910 for manual segmentation.</p><p><strong>Conclusions: </strong>An innovative AI-tool for automated segmentation of mandibular incisive canal on CBCT scans was proofed to be accurate, time efficient, and highly consistent, serving pre-surgical planning.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"20230321"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968771/pdf/","citationCount":"0","resultStr":"{\"title\":\"A unique artificial intelligence-based tool for automated CBCT segmentation of mandibular incisive canal.\",\"authors\":\"Thanatchaporn Jindanil, Luiz Eduardo Marinho-Vieira, Sergio Lins de-Azevedo-Vaz, Reinhilde Jacobs\",\"doi\":\"10.1259/dmfr.20230321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To develop and validate a novel artificial intelligence (AI) tool for automated segmentation of mandibular incisive canal on cone beam computed tomography (CBCT) scans.</p><p><strong>Methods: </strong>After ethical approval, a data set of 200 CBCT scans were selected and categorized into training (160), validation (20), and test (20) sets. CBCT scans were imported into Virtual Patient Creator and ground truth for training and validation were manually segmented by three oral radiologists in multiplanar reconstructions. Intra- and interobserver analysis for human segmentation variability was performed on 20% of the data set. Segmentations were imported into Mimics for standardization. Resulting files were imported to 3-Matic for analysis using surface- and voxel-based methods. Evaluation metrics involved time efficiency, analysis metrics including Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Root mean square error (RMSE), precision, recall, accuracy, and consistency. These values were calculated considering AI-based segmentation and refined-AI segmentation compared to manual segmentation.</p><p><strong>Results: </strong>Average time for AI-based segmentation, refined-AI segmentation and manual segmentation was 00:10, 08:09, and 47:18 (284-fold time reduction). AI-based segmentation showed mean values of DSC 0.873, IoU 0.775, RMSE 0.256 mm, precision 0.837 and recall 0.890 while refined-AI segmentation provided DSC 0.876, IoU 0.781, RMSE 0.267 mm, precision 0. 852 and recall 0.902 with the accuracy of 0.998 for both methods. The consistency was one for AI-based segmentation and 0.910 for manual segmentation.</p><p><strong>Conclusions: </strong>An innovative AI-tool for automated segmentation of mandibular incisive canal on CBCT scans was proofed to be accurate, time efficient, and highly consistent, serving pre-surgical planning.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\" \",\"pages\":\"20230321\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968771/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1259/dmfr.20230321\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1259/dmfr.20230321","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
A unique artificial intelligence-based tool for automated CBCT segmentation of mandibular incisive canal.
Objectives: To develop and validate a novel artificial intelligence (AI) tool for automated segmentation of mandibular incisive canal on cone beam computed tomography (CBCT) scans.
Methods: After ethical approval, a data set of 200 CBCT scans were selected and categorized into training (160), validation (20), and test (20) sets. CBCT scans were imported into Virtual Patient Creator and ground truth for training and validation were manually segmented by three oral radiologists in multiplanar reconstructions. Intra- and interobserver analysis for human segmentation variability was performed on 20% of the data set. Segmentations were imported into Mimics for standardization. Resulting files were imported to 3-Matic for analysis using surface- and voxel-based methods. Evaluation metrics involved time efficiency, analysis metrics including Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Root mean square error (RMSE), precision, recall, accuracy, and consistency. These values were calculated considering AI-based segmentation and refined-AI segmentation compared to manual segmentation.
Results: Average time for AI-based segmentation, refined-AI segmentation and manual segmentation was 00:10, 08:09, and 47:18 (284-fold time reduction). AI-based segmentation showed mean values of DSC 0.873, IoU 0.775, RMSE 0.256 mm, precision 0.837 and recall 0.890 while refined-AI segmentation provided DSC 0.876, IoU 0.781, RMSE 0.267 mm, precision 0. 852 and recall 0.902 with the accuracy of 0.998 for both methods. The consistency was one for AI-based segmentation and 0.910 for manual segmentation.
Conclusions: An innovative AI-tool for automated segmentation of mandibular incisive canal on CBCT scans was proofed to be accurate, time efficient, and highly consistent, serving pre-surgical planning.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X