识别单细胞转录组数据中的细胞亚群:计数零膨胀的贝叶斯混合建模方法。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2023-10-01 DOI:10.1089/cmb.2022.0273
Tom Wilson, Duong H T Vo, Thomas Thorne
{"title":"识别单细胞转录组数据中的细胞亚群:计数零膨胀的贝叶斯混合建模方法。","authors":"Tom Wilson, Duong H T Vo, Thomas Thorne","doi":"10.1089/cmb.2022.0273","DOIUrl":null,"url":null,"abstract":"<p><p>In the study of single-cell RNA-seq (scRNA-Seq) data, a key component of the analysis is to identify subpopulations of cells in the data. A variety of approaches to this have been considered, and although many machine learning-based methods have been developed, these rarely give an estimate of uncertainty in the cluster assignment. To allow for this, probabilistic models have been developed, but scRNA-Seq data exhibit a phenomenon known as dropout, whereby a large proportion of the observed read counts are zero. This poses challenges in developing probabilistic models that appropriately model the data. We develop a novel Dirichlet process mixture model that employs both a mixture at the cell level to model multiple populations of cells and a zero-inflated negative binomial mixture of counts at the transcript level. By taking a Bayesian approach, we are able to model the expression of genes within clusters, and to quantify uncertainty in cluster assignments. It is shown that this approach outperforms previous approaches that applied multinomial distributions to model scRNA-Seq counts and negative binomial models that do not take into account zero inflation. Applied to a publicly available data set of scRNA-Seq counts of multiple cell types from the mouse cortex and hippocampus, we demonstrate how our approach can be used to distinguish subpopulations of cells as clusters in the data, and to identify gene sets that are indicative of membership of a subpopulation.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Subpopulations of Cells in Single-Cell Transcriptomic Data: A Bayesian Mixture Modeling Approach to Zero Inflation of Counts.\",\"authors\":\"Tom Wilson, Duong H T Vo, Thomas Thorne\",\"doi\":\"10.1089/cmb.2022.0273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the study of single-cell RNA-seq (scRNA-Seq) data, a key component of the analysis is to identify subpopulations of cells in the data. A variety of approaches to this have been considered, and although many machine learning-based methods have been developed, these rarely give an estimate of uncertainty in the cluster assignment. To allow for this, probabilistic models have been developed, but scRNA-Seq data exhibit a phenomenon known as dropout, whereby a large proportion of the observed read counts are zero. This poses challenges in developing probabilistic models that appropriately model the data. We develop a novel Dirichlet process mixture model that employs both a mixture at the cell level to model multiple populations of cells and a zero-inflated negative binomial mixture of counts at the transcript level. By taking a Bayesian approach, we are able to model the expression of genes within clusters, and to quantify uncertainty in cluster assignments. It is shown that this approach outperforms previous approaches that applied multinomial distributions to model scRNA-Seq counts and negative binomial models that do not take into account zero inflation. Applied to a publicly available data set of scRNA-Seq counts of multiple cell types from the mouse cortex and hippocampus, we demonstrate how our approach can be used to distinguish subpopulations of cells as clusters in the data, and to identify gene sets that are indicative of membership of a subpopulation.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2022.0273\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2022.0273","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在单细胞RNA-seq(scRNA-seq)数据的研究中,分析的一个关键组成部分是识别数据中的细胞亚群。已经考虑了多种方法,尽管已经开发了许多基于机器学习的方法,但这些方法很少对聚类分配的不确定性进行估计。为了实现这一点,已经开发了概率模型,但scRNA-Seq数据表现出一种称为脱落的现象,即观察到的读取计数中有很大一部分为零。这对开发对数据进行适当建模的概率模型提出了挑战。我们开发了一种新的狄利克雷过程混合物模型,该模型既采用细胞水平的混合物来模拟多个细胞群体,也采用转录物水平的计数的零膨胀负二项式混合物。通过采用贝叶斯方法,我们能够对聚类中基因的表达进行建模,并量化聚类分配中的不确定性。结果表明,该方法优于以前的方法,以前的方法将多项式分布应用于scRNA-Seq计数建模,而负二项式模型不考虑零通货膨胀。应用于来自小鼠皮层和海马体的多种细胞类型的scRNA-Seq计数的公开数据集,我们展示了我们的方法如何用于将细胞亚群区分为数据中的簇,并识别指示亚群成员身份的基因集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Subpopulations of Cells in Single-Cell Transcriptomic Data: A Bayesian Mixture Modeling Approach to Zero Inflation of Counts.

In the study of single-cell RNA-seq (scRNA-Seq) data, a key component of the analysis is to identify subpopulations of cells in the data. A variety of approaches to this have been considered, and although many machine learning-based methods have been developed, these rarely give an estimate of uncertainty in the cluster assignment. To allow for this, probabilistic models have been developed, but scRNA-Seq data exhibit a phenomenon known as dropout, whereby a large proportion of the observed read counts are zero. This poses challenges in developing probabilistic models that appropriately model the data. We develop a novel Dirichlet process mixture model that employs both a mixture at the cell level to model multiple populations of cells and a zero-inflated negative binomial mixture of counts at the transcript level. By taking a Bayesian approach, we are able to model the expression of genes within clusters, and to quantify uncertainty in cluster assignments. It is shown that this approach outperforms previous approaches that applied multinomial distributions to model scRNA-Seq counts and negative binomial models that do not take into account zero inflation. Applied to a publicly available data set of scRNA-Seq counts of multiple cell types from the mouse cortex and hippocampus, we demonstrate how our approach can be used to distinguish subpopulations of cells as clusters in the data, and to identify gene sets that are indicative of membership of a subpopulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
Network-Constrained Eigen-Single-Cell Profile Estimation for Uncovering Crucial Immunogene Regulatory Systems in Human Bone Marrow. Unveiling Commonalities and Differences in Genetic Regulations via Two-Way Fusion. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology. HTFSMMA: Higher-Order Topological Guided Small Molecule-MicroRNA Associations Prediction. From Policy to Prediction: Assessing Forecasting Accuracy in an Integrated Framework with Machine Learning and Disease Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1