{"title":"两种常用实验室酵母菌株W303和BY4742的蛋白质组学比较分析。","authors":"Valentina Rossio, Xinyue Liu, Joao A Paulo","doi":"10.3390/proteomes11040030","DOIUrl":null,"url":null,"abstract":"<p><p>The yeast <i>Saccharomyces cerevisiae</i> is a powerful model system that is often used to expand our understanding of cellular processes and biological functions. Although many genetically well-characterized laboratory strains of <i>S. cerevisiae</i> are available, they may have different genetic backgrounds which can confound data interpretation. Here, we report a comparative whole-proteome analysis of two common laboratory yeast background strains, W303 and BY4742, in both exponential and stationary growth phases using isobaric-tag-based mass spectrometry to highlight differences in proteome complexity. We quantified over 4400 proteins, hundreds of which showed differences in abundance between strains and/or growth phases. Moreover, we used proteome-wide protein abundance to profile the mating type of the strains used in the experiment, the auxotrophic markers, and associated metabolic pathways, as well as to investigate differences in particular classes of proteins, such as the pleiotropic drug resistance (PDR) proteins. This study is a valuable resource that offers insight into mechanistic differences between two common yeast background strains and can be used as a guide to select a background that is best suited for addressing a particular biological question.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"11 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594481/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Proteomic Analysis of Two Commonly Used Laboratory Yeast Strains: W303 and BY4742.\",\"authors\":\"Valentina Rossio, Xinyue Liu, Joao A Paulo\",\"doi\":\"10.3390/proteomes11040030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The yeast <i>Saccharomyces cerevisiae</i> is a powerful model system that is often used to expand our understanding of cellular processes and biological functions. Although many genetically well-characterized laboratory strains of <i>S. cerevisiae</i> are available, they may have different genetic backgrounds which can confound data interpretation. Here, we report a comparative whole-proteome analysis of two common laboratory yeast background strains, W303 and BY4742, in both exponential and stationary growth phases using isobaric-tag-based mass spectrometry to highlight differences in proteome complexity. We quantified over 4400 proteins, hundreds of which showed differences in abundance between strains and/or growth phases. Moreover, we used proteome-wide protein abundance to profile the mating type of the strains used in the experiment, the auxotrophic markers, and associated metabolic pathways, as well as to investigate differences in particular classes of proteins, such as the pleiotropic drug resistance (PDR) proteins. This study is a valuable resource that offers insight into mechanistic differences between two common yeast background strains and can be used as a guide to select a background that is best suited for addressing a particular biological question.</p>\",\"PeriodicalId\":20877,\"journal\":{\"name\":\"Proteomes\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proteomes11040030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes11040030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comparative Proteomic Analysis of Two Commonly Used Laboratory Yeast Strains: W303 and BY4742.
The yeast Saccharomyces cerevisiae is a powerful model system that is often used to expand our understanding of cellular processes and biological functions. Although many genetically well-characterized laboratory strains of S. cerevisiae are available, they may have different genetic backgrounds which can confound data interpretation. Here, we report a comparative whole-proteome analysis of two common laboratory yeast background strains, W303 and BY4742, in both exponential and stationary growth phases using isobaric-tag-based mass spectrometry to highlight differences in proteome complexity. We quantified over 4400 proteins, hundreds of which showed differences in abundance between strains and/or growth phases. Moreover, we used proteome-wide protein abundance to profile the mating type of the strains used in the experiment, the auxotrophic markers, and associated metabolic pathways, as well as to investigate differences in particular classes of proteins, such as the pleiotropic drug resistance (PDR) proteins. This study is a valuable resource that offers insight into mechanistic differences between two common yeast background strains and can be used as a guide to select a background that is best suited for addressing a particular biological question.
ProteomesBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍:
Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics