{"title":"肌球蛋白和原肌球蛋白肌钙蛋白互补调节肌肉的热激活。","authors":"Shuya Ishii, Kotaro Oyama, Fuyu Kobirumaki-Shimozawa, Tomohiro Nakanishi, Naoya Nakahara, Madoka Suzuki, Shin'ichi Ishiwata, Norio Fukuda","doi":"10.1085/jgp.202313414","DOIUrl":null,"url":null,"abstract":"Ishii et al. analyze the microheating-induced sliding movements of reconstituted thin filaments in an in vitro motility assay. They find that the temperature dependence of thin filament sliding is complementarily regulated by myosin and tropomyosin–troponin within the body temperature range.","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"155 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591409/pdf/","citationCount":"1","resultStr":"{\"title\":\"Myosin and tropomyosin-troponin complementarily regulate thermal activation of muscles.\",\"authors\":\"Shuya Ishii, Kotaro Oyama, Fuyu Kobirumaki-Shimozawa, Tomohiro Nakanishi, Naoya Nakahara, Madoka Suzuki, Shin'ichi Ishiwata, Norio Fukuda\",\"doi\":\"10.1085/jgp.202313414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ishii et al. analyze the microheating-induced sliding movements of reconstituted thin filaments in an in vitro motility assay. They find that the temperature dependence of thin filament sliding is complementarily regulated by myosin and tropomyosin–troponin within the body temperature range.\",\"PeriodicalId\":54828,\"journal\":{\"name\":\"Journal of General Physiology\",\"volume\":\"155 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591409/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1085/jgp.202313414\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202313414","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Myosin and tropomyosin-troponin complementarily regulate thermal activation of muscles.
Ishii et al. analyze the microheating-induced sliding movements of reconstituted thin filaments in an in vitro motility assay. They find that the temperature dependence of thin filament sliding is complementarily regulated by myosin and tropomyosin–troponin within the body temperature range.
期刊介绍:
General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization.
The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.