{"title":"缓解用于电力推进系统的氮化镓高压电源中的 Deane 和 Hamill 现象","authors":"Minghai Dong, Hui Li, Shan Yin, Kye Yak See, Yingzhe Wu, Xiong Xin","doi":"10.1049/hve2.12379","DOIUrl":null,"url":null,"abstract":"<p>The step-up resonant converters are widely adopted to provide high voltage in kV-level for electric propulsion system due to their high efficiency, low mass, modularisation, and high-power density. The bipolar Cockcroft-Walton voltage multiplier (BiCWVM) is a major circuit that steps up the voltage in the resonant converter. However, the diode non-linearity in BiCWVM can introduce self-sustained quasi-periodic oscillations in the voltage and current waveforms, which is commonly known as the Deane and Hamill (DH) phenomenon. The oscillation can lead to higher magnetic loss and control failure, and it is more likely to present in the gallium nitride-based converter due to the high-frequency operation. The authors aim to investigate and mitigate the DH phenomenon systematically so that proper mitigation can be implemented. To facilitate the investigation, the circuit before the BiCWVM in the converter is derived and modelled as a voltage source <i>v</i><sub><i>m</i></sub> and a series inductor <i>L</i><sub>sy</sub>. Also, the reverse recovery process of the diode in the BiCWVM can be represented by a piecewise-linear (PWL) model, with the simplified circuit and PWL model, the relationship between voltage and current under different operating conditions can be determined with ease. The relationship allows to understand the mechanism of diode reverse recovery in BiCWVM that leads to DH phenomenon. Finally, a hybrid-/full-silicon carbide (SiC) design is proposed to mitigate the DH phenomenon, which is verified experimentally for a 300-kHz, 5-W, 20-V/1.5-kV GaN-based step-up resonant converter.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12379","citationCount":"0","resultStr":"{\"title\":\"Mitigation of Deane and Hamill phenomenon in gallium nitride high-voltage power supply for electric propulsion system application\",\"authors\":\"Minghai Dong, Hui Li, Shan Yin, Kye Yak See, Yingzhe Wu, Xiong Xin\",\"doi\":\"10.1049/hve2.12379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The step-up resonant converters are widely adopted to provide high voltage in kV-level for electric propulsion system due to their high efficiency, low mass, modularisation, and high-power density. The bipolar Cockcroft-Walton voltage multiplier (BiCWVM) is a major circuit that steps up the voltage in the resonant converter. However, the diode non-linearity in BiCWVM can introduce self-sustained quasi-periodic oscillations in the voltage and current waveforms, which is commonly known as the Deane and Hamill (DH) phenomenon. The oscillation can lead to higher magnetic loss and control failure, and it is more likely to present in the gallium nitride-based converter due to the high-frequency operation. The authors aim to investigate and mitigate the DH phenomenon systematically so that proper mitigation can be implemented. To facilitate the investigation, the circuit before the BiCWVM in the converter is derived and modelled as a voltage source <i>v</i><sub><i>m</i></sub> and a series inductor <i>L</i><sub>sy</sub>. Also, the reverse recovery process of the diode in the BiCWVM can be represented by a piecewise-linear (PWL) model, with the simplified circuit and PWL model, the relationship between voltage and current under different operating conditions can be determined with ease. The relationship allows to understand the mechanism of diode reverse recovery in BiCWVM that leads to DH phenomenon. Finally, a hybrid-/full-silicon carbide (SiC) design is proposed to mitigate the DH phenomenon, which is verified experimentally for a 300-kHz, 5-W, 20-V/1.5-kV GaN-based step-up resonant converter.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12379\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12379\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12379","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mitigation of Deane and Hamill phenomenon in gallium nitride high-voltage power supply for electric propulsion system application
The step-up resonant converters are widely adopted to provide high voltage in kV-level for electric propulsion system due to their high efficiency, low mass, modularisation, and high-power density. The bipolar Cockcroft-Walton voltage multiplier (BiCWVM) is a major circuit that steps up the voltage in the resonant converter. However, the diode non-linearity in BiCWVM can introduce self-sustained quasi-periodic oscillations in the voltage and current waveforms, which is commonly known as the Deane and Hamill (DH) phenomenon. The oscillation can lead to higher magnetic loss and control failure, and it is more likely to present in the gallium nitride-based converter due to the high-frequency operation. The authors aim to investigate and mitigate the DH phenomenon systematically so that proper mitigation can be implemented. To facilitate the investigation, the circuit before the BiCWVM in the converter is derived and modelled as a voltage source vm and a series inductor Lsy. Also, the reverse recovery process of the diode in the BiCWVM can be represented by a piecewise-linear (PWL) model, with the simplified circuit and PWL model, the relationship between voltage and current under different operating conditions can be determined with ease. The relationship allows to understand the mechanism of diode reverse recovery in BiCWVM that leads to DH phenomenon. Finally, a hybrid-/full-silicon carbide (SiC) design is proposed to mitigate the DH phenomenon, which is verified experimentally for a 300-kHz, 5-W, 20-V/1.5-kV GaN-based step-up resonant converter.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf