{"title":"Berni Alder和分子模拟的先驱时代","authors":"Giovanni Battimelli, Giovanni Ciccotti","doi":"10.1140/epjh/e2018-90027-5","DOIUrl":null,"url":null,"abstract":"<p>\nThe paper traces the early stages of Berni Alder’s scientific accomplishments, focusing on his contributions to the development of Computational Methods for the study of Statistical Mechanics. Following attempts in the early 50s to implement Monte Carlo methods to study equilibrium properties of many-body systems, Alder developed in collaboration with Tom Wainwright the Molecular Dynamics approach as an alternative tool to Monte Carlo, allowing to extend simulation techniques to non-equilibrium properties. This led to the confirmation of the existence of a phase transition in a system of hard spheres in the late 50s, and was followed by the discovery of the unexpected long-time tail in the correlation function about a decade later. In the late 70s Alder was among the pioneers of the extension of Computer Simulation techniques to Quantum problems. Centered around Alder’s own pioneering contributions, the paper covers about thirty years of developments in Molecular Simulation, from the birth of the field to its coming of age as a self-sustained discipline.\n</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"43 3","pages":"303 - 335"},"PeriodicalIF":0.8000,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2018-90027-5","citationCount":"15","resultStr":"{\"title\":\"Berni Alder and the pioneering times of molecular simulation\",\"authors\":\"Giovanni Battimelli, Giovanni Ciccotti\",\"doi\":\"10.1140/epjh/e2018-90027-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nThe paper traces the early stages of Berni Alder’s scientific accomplishments, focusing on his contributions to the development of Computational Methods for the study of Statistical Mechanics. Following attempts in the early 50s to implement Monte Carlo methods to study equilibrium properties of many-body systems, Alder developed in collaboration with Tom Wainwright the Molecular Dynamics approach as an alternative tool to Monte Carlo, allowing to extend simulation techniques to non-equilibrium properties. This led to the confirmation of the existence of a phase transition in a system of hard spheres in the late 50s, and was followed by the discovery of the unexpected long-time tail in the correlation function about a decade later. In the late 70s Alder was among the pioneers of the extension of Computer Simulation techniques to Quantum problems. Centered around Alder’s own pioneering contributions, the paper covers about thirty years of developments in Molecular Simulation, from the birth of the field to its coming of age as a self-sustained discipline.\\n</p>\",\"PeriodicalId\":791,\"journal\":{\"name\":\"The European Physical Journal H\",\"volume\":\"43 3\",\"pages\":\"303 - 335\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1140/epjh/e2018-90027-5\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal H\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjh/e2018-90027-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/e2018-90027-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Berni Alder and the pioneering times of molecular simulation
The paper traces the early stages of Berni Alder’s scientific accomplishments, focusing on his contributions to the development of Computational Methods for the study of Statistical Mechanics. Following attempts in the early 50s to implement Monte Carlo methods to study equilibrium properties of many-body systems, Alder developed in collaboration with Tom Wainwright the Molecular Dynamics approach as an alternative tool to Monte Carlo, allowing to extend simulation techniques to non-equilibrium properties. This led to the confirmation of the existence of a phase transition in a system of hard spheres in the late 50s, and was followed by the discovery of the unexpected long-time tail in the correlation function about a decade later. In the late 70s Alder was among the pioneers of the extension of Computer Simulation techniques to Quantum problems. Centered around Alder’s own pioneering contributions, the paper covers about thirty years of developments in Molecular Simulation, from the birth of the field to its coming of age as a self-sustained discipline.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.