Jun-ichi Inoguchi , Yoshiki Jikumaru , Kenji Kajiwara , Kenjiro T. Miura , Wolfgang K. Schief
{"title":"对数美学曲线:相似几何,可积离散化和变分原理","authors":"Jun-ichi Inoguchi , Yoshiki Jikumaru , Kenji Kajiwara , Kenjiro T. Miura , Wolfgang K. Schief","doi":"10.1016/j.cagd.2023.102233","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a class of plane curves called log-aesthetic curves and their generalization which are used in computer aided geometric design. In the framework of similarity geometry, those curves are characterized as invariant curves under the integrable flow on plane curves governed by the Burgers equation. They also admit a variational formulation leading to the stationary Burgers equation as the Euler-Lagrange equation. As an application of the formulation, we propose a discretization of these curves and the associated variational principle which preserves the underlying integrable structure. We finally present algorithms for generating discrete log-aesthetic curves for given <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> data based on similarity geometry. Our method is able to generate <em>S</em>-shaped discrete curves with an inflection as well as <em>C</em>-shaped curves according to the boundary condition. The resulting discrete curves are regarded as self-adaptive discretization and thus high-quality even with the small number of points. Through the continuous representation, those discrete curves provide a flexible tool for the generation of high-quality shapes.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"105 ","pages":"Article 102233"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Log-aesthetic curves: Similarity geometry, integrable discretization and variational principles\",\"authors\":\"Jun-ichi Inoguchi , Yoshiki Jikumaru , Kenji Kajiwara , Kenjiro T. Miura , Wolfgang K. Schief\",\"doi\":\"10.1016/j.cagd.2023.102233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a class of plane curves called log-aesthetic curves and their generalization which are used in computer aided geometric design. In the framework of similarity geometry, those curves are characterized as invariant curves under the integrable flow on plane curves governed by the Burgers equation. They also admit a variational formulation leading to the stationary Burgers equation as the Euler-Lagrange equation. As an application of the formulation, we propose a discretization of these curves and the associated variational principle which preserves the underlying integrable structure. We finally present algorithms for generating discrete log-aesthetic curves for given <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> data based on similarity geometry. Our method is able to generate <em>S</em>-shaped discrete curves with an inflection as well as <em>C</em>-shaped curves according to the boundary condition. The resulting discrete curves are regarded as self-adaptive discretization and thus high-quality even with the small number of points. Through the continuous representation, those discrete curves provide a flexible tool for the generation of high-quality shapes.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"105 \",\"pages\":\"Article 102233\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839623000651\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839623000651","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Log-aesthetic curves: Similarity geometry, integrable discretization and variational principles
In this paper, we consider a class of plane curves called log-aesthetic curves and their generalization which are used in computer aided geometric design. In the framework of similarity geometry, those curves are characterized as invariant curves under the integrable flow on plane curves governed by the Burgers equation. They also admit a variational formulation leading to the stationary Burgers equation as the Euler-Lagrange equation. As an application of the formulation, we propose a discretization of these curves and the associated variational principle which preserves the underlying integrable structure. We finally present algorithms for generating discrete log-aesthetic curves for given data based on similarity geometry. Our method is able to generate S-shaped discrete curves with an inflection as well as C-shaped curves according to the boundary condition. The resulting discrete curves are regarded as self-adaptive discretization and thus high-quality even with the small number of points. Through the continuous representation, those discrete curves provide a flexible tool for the generation of high-quality shapes.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.