有效的并行减少带宽对称矩阵

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2023-02-01 DOI:10.1016/j.parco.2023.102998
Valeriy Manin, Bruno Lang
{"title":"有效的并行减少带宽对称矩阵","authors":"Valeriy Manin,&nbsp;Bruno Lang","doi":"10.1016/j.parco.2023.102998","DOIUrl":null,"url":null,"abstract":"<div><p>Bandwidth reduction can be a first step in the computation of eigenvalues and eigenvectors for a wide-banded complex Hermitian (or real symmetric) matrix. We present algorithms for this reduction and the corresponding back-transformation of the eigenvectors. These algorithms rely on blocked Householder transformations, thus enabling level 3 <span>BLAS</span> performance, and they feature two levels of parallelism. The efficiency of our approach is demonstrated with numerical experiments.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"115 ","pages":"Article 102998"},"PeriodicalIF":2.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient parallel reduction of bandwidth for symmetric matrices\",\"authors\":\"Valeriy Manin,&nbsp;Bruno Lang\",\"doi\":\"10.1016/j.parco.2023.102998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bandwidth reduction can be a first step in the computation of eigenvalues and eigenvectors for a wide-banded complex Hermitian (or real symmetric) matrix. We present algorithms for this reduction and the corresponding back-transformation of the eigenvectors. These algorithms rely on blocked Householder transformations, thus enabling level 3 <span>BLAS</span> performance, and they feature two levels of parallelism. The efficiency of our approach is demonstrated with numerical experiments.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"115 \",\"pages\":\"Article 102998\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819123000042\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

带宽缩减可以是计算宽带复埃尔米特(或实对称)矩阵的特征值和特征向量的第一步。我们提出了这种约简的算法和相应的特征向量的反变换。这些算法依赖于阻塞的Householder转换,从而实现了级别3的BLAS性能,并且具有两个级别的并行性。数值实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient parallel reduction of bandwidth for symmetric matrices

Bandwidth reduction can be a first step in the computation of eigenvalues and eigenvectors for a wide-banded complex Hermitian (or real symmetric) matrix. We present algorithms for this reduction and the corresponding back-transformation of the eigenvectors. These algorithms rely on blocked Householder transformations, thus enabling level 3 BLAS performance, and they feature two levels of parallelism. The efficiency of our approach is demonstrated with numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1