L. Hariasz , P.C.F. Di Stefano , M. Stukel , B.C. Rasco , K.P. Rykaczewski , N.T. Brewer , R.K. Grzywacz , E.D. Lukosi , D.W. Stracener , M. Mancuso , F. Petricca , J. Ninkovic , P. Lechner , KDK collaboration
{"title":"用KDK符合装置精确测量65Zn电子捕获衰减","authors":"L. Hariasz , P.C.F. Di Stefano , M. Stukel , B.C. Rasco , K.P. Rykaczewski , N.T. Brewer , R.K. Grzywacz , E.D. Lukosi , D.W. Stracener , M. Mancuso , F. Petricca , J. Ninkovic , P. Lechner , KDK collaboration","doi":"10.1016/j.nds.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><p><sup>65</sup>Zn is a common calibration source, moreover used as a radioactive tracer in medical and biological studies. In many cases, <em>γ</em>-spectroscopy is a preferred method of <sup>65</sup>Zn standardization, which relies directly on the branching ratio of J<em>π</em>(<sup>65</sup>Zn) = 5/2<sup>−</sup> → J<em>π</em>(<sup>65</sup>Cu) = 5/2<sup>−</sup> via electron capture (EC*). We measure the relative intensity of this branch to that proceeding directly to the ground state (EC<sup>0</sup>) using a novel coincidence technique, finding I<sub>EC</sub>0/IEC* = 0.9684 ± 0.0018. Re-evaluating the decay scheme of <sup>65</sup>Zn by adopting the commonly evaluated branching ratio of <em>I</em><sub><em>β</em></sub><em>+</em> = 1.4271(7)% we obtain IEC* = (50.08 ± 0.06)%, and I<sub>EC</sub>0 = (48.50 ± 0.06)%. The associated 1115 keV gamma intensity agrees with the previously reported NNDC value, and is now accessible with a factor of ∼2 increase in precision. Our re-evaluation removes reliance on the deduction of this gamma intensity from numerous measurements, some of which disagree and depend directly on total activity determination. The KDK experimental technique provides a new avenue for verification or updates to the decay scheme of <sup>65</sup>Zn, and is applicable to other isotopes.</p></div>","PeriodicalId":49735,"journal":{"name":"Nuclear Data Sheets","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision measurement of 65Zn electron-capture decays with the KDK coincidence setup\",\"authors\":\"L. Hariasz , P.C.F. Di Stefano , M. Stukel , B.C. Rasco , K.P. Rykaczewski , N.T. Brewer , R.K. Grzywacz , E.D. Lukosi , D.W. Stracener , M. Mancuso , F. Petricca , J. Ninkovic , P. Lechner , KDK collaboration\",\"doi\":\"10.1016/j.nds.2023.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><sup>65</sup>Zn is a common calibration source, moreover used as a radioactive tracer in medical and biological studies. In many cases, <em>γ</em>-spectroscopy is a preferred method of <sup>65</sup>Zn standardization, which relies directly on the branching ratio of J<em>π</em>(<sup>65</sup>Zn) = 5/2<sup>−</sup> → J<em>π</em>(<sup>65</sup>Cu) = 5/2<sup>−</sup> via electron capture (EC*). We measure the relative intensity of this branch to that proceeding directly to the ground state (EC<sup>0</sup>) using a novel coincidence technique, finding I<sub>EC</sub>0/IEC* = 0.9684 ± 0.0018. Re-evaluating the decay scheme of <sup>65</sup>Zn by adopting the commonly evaluated branching ratio of <em>I</em><sub><em>β</em></sub><em>+</em> = 1.4271(7)% we obtain IEC* = (50.08 ± 0.06)%, and I<sub>EC</sub>0 = (48.50 ± 0.06)%. The associated 1115 keV gamma intensity agrees with the previously reported NNDC value, and is now accessible with a factor of ∼2 increase in precision. Our re-evaluation removes reliance on the deduction of this gamma intensity from numerous measurements, some of which disagree and depend directly on total activity determination. The KDK experimental technique provides a new avenue for verification or updates to the decay scheme of <sup>65</sup>Zn, and is applicable to other isotopes.</p></div>\",\"PeriodicalId\":49735,\"journal\":{\"name\":\"Nuclear Data Sheets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Data Sheets\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0090375223000352\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Data Sheets","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0090375223000352","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Precision measurement of 65Zn electron-capture decays with the KDK coincidence setup
65Zn is a common calibration source, moreover used as a radioactive tracer in medical and biological studies. In many cases, γ-spectroscopy is a preferred method of 65Zn standardization, which relies directly on the branching ratio of Jπ(65Zn) = 5/2− → Jπ(65Cu) = 5/2− via electron capture (EC*). We measure the relative intensity of this branch to that proceeding directly to the ground state (EC0) using a novel coincidence technique, finding IEC0/IEC* = 0.9684 ± 0.0018. Re-evaluating the decay scheme of 65Zn by adopting the commonly evaluated branching ratio of Iβ+ = 1.4271(7)% we obtain IEC* = (50.08 ± 0.06)%, and IEC0 = (48.50 ± 0.06)%. The associated 1115 keV gamma intensity agrees with the previously reported NNDC value, and is now accessible with a factor of ∼2 increase in precision. Our re-evaluation removes reliance on the deduction of this gamma intensity from numerous measurements, some of which disagree and depend directly on total activity determination. The KDK experimental technique provides a new avenue for verification or updates to the decay scheme of 65Zn, and is applicable to other isotopes.
期刊介绍:
The Nuclear Data Sheets are current and are published monthly. They are devoted to compilation and evaluations of experimental and theoretical results in Nuclear Physics. The journal is mostly produced from Evaluated Nuclear Structure Data File (ENSDF), a computer file maintained by the US National Nuclear Data Center