Wei Fan , Chi Zhang , Dong-Xiang Zhang , Qing-Dong Wang , Li-Xin Guo
{"title":"全身振动下腰椎椎间融合术与非融合术后骨质疏松对腰椎影响的生物力学比较","authors":"Wei Fan , Chi Zhang , Dong-Xiang Zhang , Qing-Dong Wang , Li-Xin Guo","doi":"10.1016/j.irbm.2023.100797","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p><span>The objective of this study was to determine and compare the influence of osteoporosis on </span>biomechanics<span><span> of the spine after lumbar interbody fusion (LIF) surgery or non-fusion dynamic stabilization (NFDS) surgery under whole </span>body vibration (WBV) which is typically present in moving vehicles.</span></p></div><div><h3>Methods</h3><p>Based on a previously validated finite element (FE) model of normal human lumbosacral spine<span>, four surgical models including LIF, LIF with osteoporosis (LIF-OST), NFDS, and NFDS with osteoporosis (NFDS-OST) were constructed. Biomechanical responses of the surgical models to an axial cyclic load<span> were calculated using transient dynamic analysis<span>. Response parameters include vibration amplitudes of the endplate stress and screw stress at surgical L4–L5 level, vibration amplitudes of the disc bulge and intradiscal pressure at adjacent L3–L4 level.</span></span></span></p></div><div><h3>Results</h3><p>Osteoporosis increased vibration amplitudes of all these investigated response parameters. Further, we found that vibration amplitudes of the endplate stress and screw stress for the LIF-OST model were significantly higher than those for the NFDS-OST model, but there was very small difference in vibration amplitudes of the disc bulge and intradiscal pressure between the LIF-OST and NFDS-OST models.</p></div><div><h3>Conclusions</h3><p>For both the LIF and NFDS surgeries, osteoporosis might increase the risk for implant failure and accelerate adjacent segment degeneration (ASD) under WBV. When osteoporosis occurs, LIF might be associated with a higher likelihood of implant failure at the surgical level compared with NFDS, and the surgical approach (LIF or NFDS) might have little influence on biomechanics of the adjacent level.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical Comparison of the Influence of Osteoporosis on the Lumbar Spine After Lumbar Interbody Fusion Surgery or Non-fusion Dynamic Stabilization Surgery Under Whole Body Vibration\",\"authors\":\"Wei Fan , Chi Zhang , Dong-Xiang Zhang , Qing-Dong Wang , Li-Xin Guo\",\"doi\":\"10.1016/j.irbm.2023.100797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p><span>The objective of this study was to determine and compare the influence of osteoporosis on </span>biomechanics<span><span> of the spine after lumbar interbody fusion (LIF) surgery or non-fusion dynamic stabilization (NFDS) surgery under whole </span>body vibration (WBV) which is typically present in moving vehicles.</span></p></div><div><h3>Methods</h3><p>Based on a previously validated finite element (FE) model of normal human lumbosacral spine<span>, four surgical models including LIF, LIF with osteoporosis (LIF-OST), NFDS, and NFDS with osteoporosis (NFDS-OST) were constructed. Biomechanical responses of the surgical models to an axial cyclic load<span> were calculated using transient dynamic analysis<span>. Response parameters include vibration amplitudes of the endplate stress and screw stress at surgical L4–L5 level, vibration amplitudes of the disc bulge and intradiscal pressure at adjacent L3–L4 level.</span></span></span></p></div><div><h3>Results</h3><p>Osteoporosis increased vibration amplitudes of all these investigated response parameters. Further, we found that vibration amplitudes of the endplate stress and screw stress for the LIF-OST model were significantly higher than those for the NFDS-OST model, but there was very small difference in vibration amplitudes of the disc bulge and intradiscal pressure between the LIF-OST and NFDS-OST models.</p></div><div><h3>Conclusions</h3><p>For both the LIF and NFDS surgeries, osteoporosis might increase the risk for implant failure and accelerate adjacent segment degeneration (ASD) under WBV. When osteoporosis occurs, LIF might be associated with a higher likelihood of implant failure at the surgical level compared with NFDS, and the surgical approach (LIF or NFDS) might have little influence on biomechanics of the adjacent level.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000465\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000465","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomechanical Comparison of the Influence of Osteoporosis on the Lumbar Spine After Lumbar Interbody Fusion Surgery or Non-fusion Dynamic Stabilization Surgery Under Whole Body Vibration
Objective
The objective of this study was to determine and compare the influence of osteoporosis on biomechanics of the spine after lumbar interbody fusion (LIF) surgery or non-fusion dynamic stabilization (NFDS) surgery under whole body vibration (WBV) which is typically present in moving vehicles.
Methods
Based on a previously validated finite element (FE) model of normal human lumbosacral spine, four surgical models including LIF, LIF with osteoporosis (LIF-OST), NFDS, and NFDS with osteoporosis (NFDS-OST) were constructed. Biomechanical responses of the surgical models to an axial cyclic load were calculated using transient dynamic analysis. Response parameters include vibration amplitudes of the endplate stress and screw stress at surgical L4–L5 level, vibration amplitudes of the disc bulge and intradiscal pressure at adjacent L3–L4 level.
Results
Osteoporosis increased vibration amplitudes of all these investigated response parameters. Further, we found that vibration amplitudes of the endplate stress and screw stress for the LIF-OST model were significantly higher than those for the NFDS-OST model, but there was very small difference in vibration amplitudes of the disc bulge and intradiscal pressure between the LIF-OST and NFDS-OST models.
Conclusions
For both the LIF and NFDS surgeries, osteoporosis might increase the risk for implant failure and accelerate adjacent segment degeneration (ASD) under WBV. When osteoporosis occurs, LIF might be associated with a higher likelihood of implant failure at the surgical level compared with NFDS, and the surgical approach (LIF or NFDS) might have little influence on biomechanics of the adjacent level.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…