基于Dixon结果的有理参数曲面运动平面的有效计算

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Aided Geometric Design Pub Date : 2023-10-13 DOI:10.1016/j.cagd.2023.102253
Kai Li , Xiaohong Jia , Falai Chen
{"title":"基于Dixon结果的有理参数曲面运动平面的有效计算","authors":"Kai Li ,&nbsp;Xiaohong Jia ,&nbsp;Falai Chen","doi":"10.1016/j.cagd.2023.102253","DOIUrl":null,"url":null,"abstract":"<div><p>Moving planes have been widely recognized as a potent algebraic tool in various fundamental problems of geometric modeling, including implicitization, intersection computation, singularity calculation, and point inversion of parametric surfaces. For instance, a matrix representation that inherits the key properties of a parametric surface is constructed from a set of moving planes. In this paper, we present an efficient approach to computing such a set of moving planes that follow the given rational parametric surface. Our method is based on the calculation of Dixon resultant matrices, which allows for the computation of moving planes with simpler coefficients, improved efficiency and superior numerical stability when compared to the direct way of solving a linear system of equations for the same purpose. We also demonstrate the performance of our algorithm through experimental examples when applied to implicitization, surface intersection, singularity computation as well as inversion formula computation.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"107 ","pages":"Article 102253"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient computation of moving planes for rational parametric surfaces with base points using Dixon resultants\",\"authors\":\"Kai Li ,&nbsp;Xiaohong Jia ,&nbsp;Falai Chen\",\"doi\":\"10.1016/j.cagd.2023.102253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Moving planes have been widely recognized as a potent algebraic tool in various fundamental problems of geometric modeling, including implicitization, intersection computation, singularity calculation, and point inversion of parametric surfaces. For instance, a matrix representation that inherits the key properties of a parametric surface is constructed from a set of moving planes. In this paper, we present an efficient approach to computing such a set of moving planes that follow the given rational parametric surface. Our method is based on the calculation of Dixon resultant matrices, which allows for the computation of moving planes with simpler coefficients, improved efficiency and superior numerical stability when compared to the direct way of solving a linear system of equations for the same purpose. We also demonstrate the performance of our algorithm through experimental examples when applied to implicitization, surface intersection, singularity computation as well as inversion formula computation.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"107 \",\"pages\":\"Article 102253\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839623000857\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839623000857","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在几何建模的各种基本问题中,运动平面已被广泛认为是一种有效的代数工具,包括隐式化、交集计算、奇异性计算和参数曲面的点反演。例如,继承参数化曲面关键特性的矩阵表示是从一组移动平面构建的。在本文中,我们提出了一种有效的方法来计算这样一组遵循给定有理参数曲面的运动平面。我们的方法基于Dixon合成矩阵的计算,与直接求解线性方程组的方法相比,该方法可以计算系数更简单、效率更高、数值稳定性更高的移动平面。我们还通过实验例子证明了我们的算法在隐式化、曲面相交、奇异性计算以及反演公式计算中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient computation of moving planes for rational parametric surfaces with base points using Dixon resultants

Moving planes have been widely recognized as a potent algebraic tool in various fundamental problems of geometric modeling, including implicitization, intersection computation, singularity calculation, and point inversion of parametric surfaces. For instance, a matrix representation that inherits the key properties of a parametric surface is constructed from a set of moving planes. In this paper, we present an efficient approach to computing such a set of moving planes that follow the given rational parametric surface. Our method is based on the calculation of Dixon resultant matrices, which allows for the computation of moving planes with simpler coefficients, improved efficiency and superior numerical stability when compared to the direct way of solving a linear system of equations for the same purpose. We also demonstrate the performance of our algorithm through experimental examples when applied to implicitization, surface intersection, singularity computation as well as inversion formula computation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
期刊最新文献
A novel heterogeneous deformable surface model based on elasticity Optimal one-sided approximants of circular arc Editorial Board Build orientation optimization considering thermal distortion in additive manufacturing Algorithms and data structures for Cs-smooth RMB-splines of degree 2s + 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1