结合人工智能的表面增强拉曼光谱检测几种呼吸道病毒

Delphine Garsuault , Sanaa El Messaoudi , Mookkan Prabakaran , Ian Cheong , Anthony Boulanger , Marion Schmitt-Boulanger
{"title":"结合人工智能的表面增强拉曼光谱检测几种呼吸道病毒","authors":"Delphine Garsuault ,&nbsp;Sanaa El Messaoudi ,&nbsp;Mookkan Prabakaran ,&nbsp;Ian Cheong ,&nbsp;Anthony Boulanger ,&nbsp;Marion Schmitt-Boulanger","doi":"10.1016/j.clispe.2023.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Diagnoses of viral infections are a challenge when facing a crisis like COVID-19, where their speed and reliability are critical to minimize diseases spread. The gold standard of diagnostics, quantitative Polymerase Chain Reaction, is time- and reagent-consuming and requires qualified personnel. Therefore, it is necessary to find new detection techniques to overcome these barriers. Surface Enhanced Raman Spectroscopy (SERS) is a detection method, based on light and metallic particles admixed with the samples, already used in different fields of research. In this study, we discriminate three respiratory viruses using a combination of SERS and Artificial Intelligence (AI). Our technique appears to be fast, reproducible, and reliable, achieving between 95 % and 100 % of accuracy, standing out as a powerful tool usable for viral diagnostics.</p></div>","PeriodicalId":100277,"journal":{"name":"Clinical Spectroscopy","volume":"5 ","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of several respiratory viruses with Surface-Enhanced Raman Spectroscopy coupled with Artificial Intelligence\",\"authors\":\"Delphine Garsuault ,&nbsp;Sanaa El Messaoudi ,&nbsp;Mookkan Prabakaran ,&nbsp;Ian Cheong ,&nbsp;Anthony Boulanger ,&nbsp;Marion Schmitt-Boulanger\",\"doi\":\"10.1016/j.clispe.2023.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diagnoses of viral infections are a challenge when facing a crisis like COVID-19, where their speed and reliability are critical to minimize diseases spread. The gold standard of diagnostics, quantitative Polymerase Chain Reaction, is time- and reagent-consuming and requires qualified personnel. Therefore, it is necessary to find new detection techniques to overcome these barriers. Surface Enhanced Raman Spectroscopy (SERS) is a detection method, based on light and metallic particles admixed with the samples, already used in different fields of research. In this study, we discriminate three respiratory viruses using a combination of SERS and Artificial Intelligence (AI). Our technique appears to be fast, reproducible, and reliable, achieving between 95 % and 100 % of accuracy, standing out as a powerful tool usable for viral diagnostics.</p></div>\",\"PeriodicalId\":100277,\"journal\":{\"name\":\"Clinical Spectroscopy\",\"volume\":\"5 \",\"pages\":\"Article 100025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666054723000029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666054723000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在面临新冠肺炎等危机时,病毒感染的诊断是一个挑战,其速度和可靠性对于最大限度地减少疾病传播至关重要。诊断学的黄金标准,定量聚合酶链式反应,需要时间和试剂,需要合格的人员。因此,有必要找到新的检测技术来克服这些障碍。表面增强拉曼光谱(SERS)是一种基于光和金属颗粒与样品混合的检测方法,已用于不同的研究领域。在这项研究中,我们使用SERS和人工智能(AI)的组合来区分三种呼吸道病毒。我们的技术看起来快速、可重复、可靠,准确率在95%到100%之间,是一种可用于病毒诊断的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of several respiratory viruses with Surface-Enhanced Raman Spectroscopy coupled with Artificial Intelligence

Diagnoses of viral infections are a challenge when facing a crisis like COVID-19, where their speed and reliability are critical to minimize diseases spread. The gold standard of diagnostics, quantitative Polymerase Chain Reaction, is time- and reagent-consuming and requires qualified personnel. Therefore, it is necessary to find new detection techniques to overcome these barriers. Surface Enhanced Raman Spectroscopy (SERS) is a detection method, based on light and metallic particles admixed with the samples, already used in different fields of research. In this study, we discriminate three respiratory viruses using a combination of SERS and Artificial Intelligence (AI). Our technique appears to be fast, reproducible, and reliable, achieving between 95 % and 100 % of accuracy, standing out as a powerful tool usable for viral diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Validated differentiation of Listeria monocytogenes serogroups by FTIR spectroscopy using an Artificial Neural Network based classifier in an accredited official food control laboratory Rapid detection of heart failure using a spectroscopic liquid biopsy Raman spectroscopic analysis of human serum samples of convalescing COVID-19 positive patients Application of optical spectroscopy in diagnosing and monitoring breast cancers: A technical review Deep UV resonance Raman spectroscopy for sensitive detection and quantification of the fluoroquinolone antibiotic drug moxifloxacin and the β-lactam meropenem in human plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1