{"title":"基于神经网络算法的高超声速飞行器FADS容错系统开发","authors":"Qian Wan , Minjie Zhang , Guang Zuo , Tianbo Xie","doi":"10.1016/j.taml.2023.100464","DOIUrl":null,"url":null,"abstract":"<div><p>Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing (FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in <span><math><mrow><mn>2</mn><mo>≤</mo><mi>M</mi><mi>a</mi><mo>≤</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mspace></mspace><mtext>km</mtext><mo>≤</mo><mi>H</mi><mo>≤</mo><mn>30</mn><mspace></mspace><mtext>km</mtext></mrow></math></span>. Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where <span><math><mrow><mn>99.5</mn><mo>%</mo></mrow></math></span> of the angle-of-attack estimations are within the error band <span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><msup><mn>2</mn><mo>∘</mo></msup></mrow></math></span>. The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerant FADS system development for a hypersonic vehicle via neural network algorithms\",\"authors\":\"Qian Wan , Minjie Zhang , Guang Zuo , Tianbo Xie\",\"doi\":\"10.1016/j.taml.2023.100464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing (FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in <span><math><mrow><mn>2</mn><mo>≤</mo><mi>M</mi><mi>a</mi><mo>≤</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mspace></mspace><mtext>km</mtext><mo>≤</mo><mi>H</mi><mo>≤</mo><mn>30</mn><mspace></mspace><mtext>km</mtext></mrow></math></span>. Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where <span><math><mrow><mn>99.5</mn><mo>%</mo></mrow></math></span> of the angle-of-attack estimations are within the error band <span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><msup><mn>2</mn><mo>∘</mo></msup></mrow></math></span>. The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000351\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000351","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Fault-tolerant FADS system development for a hypersonic vehicle via neural network algorithms
Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing (FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in and . Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where of the angle-of-attack estimations are within the error band . The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).