用于概率建模的可视化分析工作流

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2023-06-01 DOI:10.1016/j.visinf.2023.05.001
Julien Klaus, Mark Blacher, Andreas Goral, Philipp Lucas, Joachim Giesen
{"title":"用于概率建模的可视化分析工作流","authors":"Julien Klaus,&nbsp;Mark Blacher,&nbsp;Andreas Goral,&nbsp;Philipp Lucas,&nbsp;Joachim Giesen","doi":"10.1016/j.visinf.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Probabilistic programming is a powerful means for formally specifying machine learning models. The inference engine of a probabilistic programming environment can be used for serving complex queries on these models. Most of the current research in probabilistic programming is dedicated to the design and implementation of highly efficient inference engines. Much less research aims at making the power of these inference engines accessible to non-expert users. Probabilistic programming means writing code. Yet many potential users from promising application areas such as the social sciences lack programming skills. This prompted recent efforts in synthesizing probabilistic programs directly from data. However, working with synthesized programs still requires the user to read, understand, and write some code, for instance, when invoking the inference engine for answering queries. Here, we present an interactive visual approach to synthesizing and querying probabilistic programs that does not require the user to read or write code.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"7 2","pages":"Pages 72-84"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A visual analytics workflow for probabilistic modeling\",\"authors\":\"Julien Klaus,&nbsp;Mark Blacher,&nbsp;Andreas Goral,&nbsp;Philipp Lucas,&nbsp;Joachim Giesen\",\"doi\":\"10.1016/j.visinf.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Probabilistic programming is a powerful means for formally specifying machine learning models. The inference engine of a probabilistic programming environment can be used for serving complex queries on these models. Most of the current research in probabilistic programming is dedicated to the design and implementation of highly efficient inference engines. Much less research aims at making the power of these inference engines accessible to non-expert users. Probabilistic programming means writing code. Yet many potential users from promising application areas such as the social sciences lack programming skills. This prompted recent efforts in synthesizing probabilistic programs directly from data. However, working with synthesized programs still requires the user to read, understand, and write some code, for instance, when invoking the inference engine for answering queries. Here, we present an interactive visual approach to synthesizing and querying probabilistic programs that does not require the user to read or write code.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"7 2\",\"pages\":\"Pages 72-84\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X23000153\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X23000153","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

概率规划是正式指定机器学习模型的一种强大手段。概率编程环境的推理引擎可以用于为这些模型上的复杂查询提供服务。目前概率规划中的大多数研究都致力于高效推理引擎的设计和实现。旨在让非专家用户能够使用这些推理引擎的研究要少得多。概率编程意味着编写代码。然而,许多来自社会科学等有前景的应用领域的潜在用户缺乏编程技能。这促使最近努力直接从数据中综合概率程序。然而,使用合成程序仍然需要用户阅读、理解和编写一些代码,例如,在调用推理引擎回答查询时。在这里,我们提出了一种交互式可视化方法来合成和查询概率程序,该方法不需要用户读或写代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A visual analytics workflow for probabilistic modeling

Probabilistic programming is a powerful means for formally specifying machine learning models. The inference engine of a probabilistic programming environment can be used for serving complex queries on these models. Most of the current research in probabilistic programming is dedicated to the design and implementation of highly efficient inference engines. Much less research aims at making the power of these inference engines accessible to non-expert users. Probabilistic programming means writing code. Yet many potential users from promising application areas such as the social sciences lack programming skills. This prompted recent efforts in synthesizing probabilistic programs directly from data. However, working with synthesized programs still requires the user to read, understand, and write some code, for instance, when invoking the inference engine for answering queries. Here, we present an interactive visual approach to synthesizing and querying probabilistic programs that does not require the user to read or write code.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1