探索新视野:通过少量的注射学习实现计算机辅助药物设计

Sabrina Silva-Mendonça , Arthur Ricardo de Sousa Vitória , Telma Woerle de Lima , Arlindo Rodrigues Galvão-Filho , Carolina Horta Andrade
{"title":"探索新视野:通过少量的注射学习实现计算机辅助药物设计","authors":"Sabrina Silva-Mendonça ,&nbsp;Arthur Ricardo de Sousa Vitória ,&nbsp;Telma Woerle de Lima ,&nbsp;Arlindo Rodrigues Galvão-Filho ,&nbsp;Carolina Horta Andrade","doi":"10.1016/j.ailsci.2023.100086","DOIUrl":null,"url":null,"abstract":"<div><p>Computational approaches have revolutionized the field of drug discovery, collectively known as Computer-Assisted Drug Design (CADD). Advancements in computing power, data generation, digitalization, and artificial intelligence (AI) techniques have played a crucial role in the rise of CADD. These approaches offer numerous benefits, enabling the analysis and interpretation of vast amounts of data from diverse sources, such as genomics, structural information, and clinical trials data. By integrating and analyzing these multiple data sources, researchers can efficiently identify potential drug targets and develop new drug candidates. Among the AI techniques, machine learning (ML) and deep learning (DL) have shown tremendous promise in drug discovery. ML and DL models can effectively utilize experimental data to accurately predict the efficacy and safety of drug candidates. However, despite these advancements, certain areas in drug discovery face data scarcity, particularly in neglected, rare, and emerging viral diseases. Few-shot learning (FSL) is an emerging approach that addresses the challenge of limited data in drug discovery. FSL enables ML models to learn from a small number of examples of a new task, achieving commendable performance by leveraging knowledge learned from related datasets or prior information. It often involves meta-learning, which trains a model to learn how to learn from few data. This ability to quickly adapt to new tasks with low data circumvents the need for extensive training on large datasets. By enabling efficient learning from a small amount of data, few-shot learning has the potential to accelerate the drug discovery process and enhance the success rate of drug development. In this review, we introduce the concept of few-shot learning and its application in drug discovery. Furthermore, we demonstrate the valuable application of few-shot learning in the identification of new drug targets, accurate prediction of drug efficacy, and the design of novel compounds possessing desired biological properties. This comprehensive review draws upon numerous papers from the literature to provide extensive insights into the effectiveness and potential of few-shot learning in these critical areas of drug discovery and development.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring new horizons: Empowering computer-assisted drug design with few-shot learning\",\"authors\":\"Sabrina Silva-Mendonça ,&nbsp;Arthur Ricardo de Sousa Vitória ,&nbsp;Telma Woerle de Lima ,&nbsp;Arlindo Rodrigues Galvão-Filho ,&nbsp;Carolina Horta Andrade\",\"doi\":\"10.1016/j.ailsci.2023.100086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computational approaches have revolutionized the field of drug discovery, collectively known as Computer-Assisted Drug Design (CADD). Advancements in computing power, data generation, digitalization, and artificial intelligence (AI) techniques have played a crucial role in the rise of CADD. These approaches offer numerous benefits, enabling the analysis and interpretation of vast amounts of data from diverse sources, such as genomics, structural information, and clinical trials data. By integrating and analyzing these multiple data sources, researchers can efficiently identify potential drug targets and develop new drug candidates. Among the AI techniques, machine learning (ML) and deep learning (DL) have shown tremendous promise in drug discovery. ML and DL models can effectively utilize experimental data to accurately predict the efficacy and safety of drug candidates. However, despite these advancements, certain areas in drug discovery face data scarcity, particularly in neglected, rare, and emerging viral diseases. Few-shot learning (FSL) is an emerging approach that addresses the challenge of limited data in drug discovery. FSL enables ML models to learn from a small number of examples of a new task, achieving commendable performance by leveraging knowledge learned from related datasets or prior information. It often involves meta-learning, which trains a model to learn how to learn from few data. This ability to quickly adapt to new tasks with low data circumvents the need for extensive training on large datasets. By enabling efficient learning from a small amount of data, few-shot learning has the potential to accelerate the drug discovery process and enhance the success rate of drug development. In this review, we introduce the concept of few-shot learning and its application in drug discovery. Furthermore, we demonstrate the valuable application of few-shot learning in the identification of new drug targets, accurate prediction of drug efficacy, and the design of novel compounds possessing desired biological properties. This comprehensive review draws upon numerous papers from the literature to provide extensive insights into the effectiveness and potential of few-shot learning in these critical areas of drug discovery and development.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318523000302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318523000302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算方法彻底改变了药物发现领域,统称为计算机辅助药物设计(CADD)。计算能力、数据生成、数字化和人工智能(AI)技术的进步在CADD的兴起中发挥了至关重要的作用。这些方法提供了许多好处,能够分析和解释来自不同来源的大量数据,如基因组学、结构信息和临床试验数据。通过整合和分析这些多个数据源,研究人员可以有效地识别潜在的药物靶点并开发新的候选药物。在人工智能技术中,机器学习(ML)和深度学习(DL)在药物发现方面显示出巨大的前景。ML和DL模型可以有效地利用实验数据来准确预测候选药物的疗效和安全性。然而,尽管取得了这些进展,药物发现的某些领域仍面临数据短缺,尤其是在被忽视、罕见和新出现的病毒性疾病方面。少量注射学习(FSL)是一种新兴的方法,可以解决药物发现中数据有限的挑战。FSL使ML模型能够从新任务的少量示例中学习,通过利用从相关数据集或先前信息中学习的知识实现了值得称赞的性能。它通常涉及元学习,它训练模型学习如何从少量数据中学习。这种快速适应低数据新任务的能力避免了在大型数据集上进行广泛训练的需要。通过从少量数据中实现高效学习,少镜头学习有可能加速药物发现过程,提高药物开发的成功率。在这篇综述中,我们介绍了少镜头学习的概念及其在药物发现中的应用。此外,我们展示了少镜头学习在识别新药靶点、准确预测药效以及设计具有所需生物特性的新型化合物方面的宝贵应用。这篇全面的综述借鉴了文献中的大量论文,对少针学习在药物发现和开发的这些关键领域的有效性和潜力提供了广泛的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring new horizons: Empowering computer-assisted drug design with few-shot learning

Computational approaches have revolutionized the field of drug discovery, collectively known as Computer-Assisted Drug Design (CADD). Advancements in computing power, data generation, digitalization, and artificial intelligence (AI) techniques have played a crucial role in the rise of CADD. These approaches offer numerous benefits, enabling the analysis and interpretation of vast amounts of data from diverse sources, such as genomics, structural information, and clinical trials data. By integrating and analyzing these multiple data sources, researchers can efficiently identify potential drug targets and develop new drug candidates. Among the AI techniques, machine learning (ML) and deep learning (DL) have shown tremendous promise in drug discovery. ML and DL models can effectively utilize experimental data to accurately predict the efficacy and safety of drug candidates. However, despite these advancements, certain areas in drug discovery face data scarcity, particularly in neglected, rare, and emerging viral diseases. Few-shot learning (FSL) is an emerging approach that addresses the challenge of limited data in drug discovery. FSL enables ML models to learn from a small number of examples of a new task, achieving commendable performance by leveraging knowledge learned from related datasets or prior information. It often involves meta-learning, which trains a model to learn how to learn from few data. This ability to quickly adapt to new tasks with low data circumvents the need for extensive training on large datasets. By enabling efficient learning from a small amount of data, few-shot learning has the potential to accelerate the drug discovery process and enhance the success rate of drug development. In this review, we introduce the concept of few-shot learning and its application in drug discovery. Furthermore, we demonstrate the valuable application of few-shot learning in the identification of new drug targets, accurate prediction of drug efficacy, and the design of novel compounds possessing desired biological properties. This comprehensive review draws upon numerous papers from the literature to provide extensive insights into the effectiveness and potential of few-shot learning in these critical areas of drug discovery and development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Pharmacological profiles of neglected tropical disease drugs DTA Atlas: A massive-scale drug repurposing database Modeling PROTAC degradation activity with machine learning Machine learning proteochemometric models for Cereblon glue activity predictions Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1