M. Flores R. , L.J. Corral , C.R. Fierro-Santillán , S.G. Navarro
{"title":"O型星恒星参数的人工神经网络估计","authors":"M. Flores R. , L.J. Corral , C.R. Fierro-Santillán , S.G. Navarro","doi":"10.1016/j.ascom.2023.100760","DOIUrl":null,"url":null,"abstract":"<div><p><span>This work presents the results of the implementation of a deep learning<span> system capable of estimating the effective temperature and surface gravity of O-type stars. The proposed system was trained with a database of 5,557 synthetic spectra computed with the stellar atmosphere code CMFGEN that covers stars with </span></span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>eff</mi></mrow></msub></math></span> from <span><math><mo>∼</mo></math></span>20,000 K to <span><math><mo>∼</mo></math></span>58,000 K, <span><math><mrow><mi>l</mi><mi>o</mi><mi>g</mi><mrow><mo>(</mo><mi>L</mi><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mo>⊙</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> from 4.3 to 6.3 dex, log<!--> <span><math><mi>g</mi></math></span> from 2.4 to 4.2 dex, and mass from 9 to 120 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span><span>. Important advantages proposed in this paper include using a set of equivalent width measurements over the optical region of the stellar spectra, which avoids processing the full spectra with the inherent computational cost and allows it to apply the same trained system over different spectra resolutions. The validation of the system was performed by processing a sample of twenty O-type stars taken from the IACOB database, and a subgroup of eleven stars of those twenty taken from The Galactic O-Star Spectroscopic Catalog (GOSC) with lower resolution. As complementary work, we show the results of a synthetic spectra fitting process with the aim of simplifying the comparison with other estimations and parameter fitting from the literature.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stellar parameter estimation in O-type stars using artificial neural networks\",\"authors\":\"M. Flores R. , L.J. Corral , C.R. Fierro-Santillán , S.G. Navarro\",\"doi\":\"10.1016/j.ascom.2023.100760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This work presents the results of the implementation of a deep learning<span> system capable of estimating the effective temperature and surface gravity of O-type stars. The proposed system was trained with a database of 5,557 synthetic spectra computed with the stellar atmosphere code CMFGEN that covers stars with </span></span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>eff</mi></mrow></msub></math></span> from <span><math><mo>∼</mo></math></span>20,000 K to <span><math><mo>∼</mo></math></span>58,000 K, <span><math><mrow><mi>l</mi><mi>o</mi><mi>g</mi><mrow><mo>(</mo><mi>L</mi><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mo>⊙</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> from 4.3 to 6.3 dex, log<!--> <span><math><mi>g</mi></math></span> from 2.4 to 4.2 dex, and mass from 9 to 120 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span><span>. Important advantages proposed in this paper include using a set of equivalent width measurements over the optical region of the stellar spectra, which avoids processing the full spectra with the inherent computational cost and allows it to apply the same trained system over different spectra resolutions. The validation of the system was performed by processing a sample of twenty O-type stars taken from the IACOB database, and a subgroup of eleven stars of those twenty taken from The Galactic O-Star Spectroscopic Catalog (GOSC) with lower resolution. As complementary work, we show the results of a synthetic spectra fitting process with the aim of simplifying the comparison with other estimations and parameter fitting from the literature.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133723000756\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133723000756","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stellar parameter estimation in O-type stars using artificial neural networks
This work presents the results of the implementation of a deep learning system capable of estimating the effective temperature and surface gravity of O-type stars. The proposed system was trained with a database of 5,557 synthetic spectra computed with the stellar atmosphere code CMFGEN that covers stars with from 20,000 K to 58,000 K, from 4.3 to 6.3 dex, log from 2.4 to 4.2 dex, and mass from 9 to 120 . Important advantages proposed in this paper include using a set of equivalent width measurements over the optical region of the stellar spectra, which avoids processing the full spectra with the inherent computational cost and allows it to apply the same trained system over different spectra resolutions. The validation of the system was performed by processing a sample of twenty O-type stars taken from the IACOB database, and a subgroup of eleven stars of those twenty taken from The Galactic O-Star Spectroscopic Catalog (GOSC) with lower resolution. As complementary work, we show the results of a synthetic spectra fitting process with the aim of simplifying the comparison with other estimations and parameter fitting from the literature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.