StreamAD:用于无监督在线异常检测的面向云平台指标的基准

Jiahui Xu , Chengxiang Lin , Fengrui Liu , Yang Wang , Wei Xiong , Zhenyu Li , Hongtao Guan , Gaogang Xie
{"title":"StreamAD:用于无监督在线异常检测的面向云平台指标的基准","authors":"Jiahui Xu ,&nbsp;Chengxiang Lin ,&nbsp;Fengrui Liu ,&nbsp;Yang Wang ,&nbsp;Wei Xiong ,&nbsp;Zhenyu Li ,&nbsp;Hongtao Guan ,&nbsp;Gaogang Xie","doi":"10.1016/j.tbench.2023.100121","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud platforms, serving as fundamental infrastructure, play a significant role in developing modern applications. In recent years, there has been growing interest among researchers in utilizing machine learning algorithms to rapidly detect and diagnose faults within complex cloud platforms, aiming to improve the quality of service and optimize system performance. There is a need for online anomaly detection on cloud platform metrics to provide timely fault alerts. To assist Site Reliability Engineers (SREs) in selecting suitable anomaly detection algorithms based on specific use cases, we introduce a benchmark called StreamAD. This benchmark offers three-fold contributions: (1) it encompasses eleven unsupervised algorithms with open-source code; (2) it abstracts various common operators for online anomaly detection which enhances the efficiency of algorithm development; (3) it provides extensive comparisons of various algorithms using different evaluation methods; With StreamAD, researchers can efficiently conduct comprehensive evaluations for new algorithms, which can further facilitate research in this area. The code of StreamAD is published at <span>https://github.com/Fengrui-Liu/StreamAD</span><svg><path></path></svg>.</p></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"3 2","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StreamAD: A cloud platform metrics-oriented benchmark for unsupervised online anomaly detection\",\"authors\":\"Jiahui Xu ,&nbsp;Chengxiang Lin ,&nbsp;Fengrui Liu ,&nbsp;Yang Wang ,&nbsp;Wei Xiong ,&nbsp;Zhenyu Li ,&nbsp;Hongtao Guan ,&nbsp;Gaogang Xie\",\"doi\":\"10.1016/j.tbench.2023.100121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cloud platforms, serving as fundamental infrastructure, play a significant role in developing modern applications. In recent years, there has been growing interest among researchers in utilizing machine learning algorithms to rapidly detect and diagnose faults within complex cloud platforms, aiming to improve the quality of service and optimize system performance. There is a need for online anomaly detection on cloud platform metrics to provide timely fault alerts. To assist Site Reliability Engineers (SREs) in selecting suitable anomaly detection algorithms based on specific use cases, we introduce a benchmark called StreamAD. This benchmark offers three-fold contributions: (1) it encompasses eleven unsupervised algorithms with open-source code; (2) it abstracts various common operators for online anomaly detection which enhances the efficiency of algorithm development; (3) it provides extensive comparisons of various algorithms using different evaluation methods; With StreamAD, researchers can efficiently conduct comprehensive evaluations for new algorithms, which can further facilitate research in this area. The code of StreamAD is published at <span>https://github.com/Fengrui-Liu/StreamAD</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":100155,\"journal\":{\"name\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"volume\":\"3 2\",\"pages\":\"Article 100121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772485923000388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772485923000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云平台作为基础设施,在开发现代应用程序方面发挥着重要作用。近年来,研究人员对利用机器学习算法快速检测和诊断复杂云平台中的故障越来越感兴趣,旨在提高服务质量和优化系统性能。需要在云平台指标上进行在线异常检测,以提供及时的故障警报。为了帮助现场可靠性工程师(SRE)根据特定用例选择合适的异常检测算法,我们引入了一个名为StreamAD的基准。这个基准测试提供了三个方面的贡献:(1)它包含了11个带有开源代码的无监督算法;(2) 它抽象了各种常见的在线异常检测算子,提高了算法开发的效率;(3) 它提供了使用不同评估方法的各种算法的广泛比较;有了StreamAD,研究人员可以有效地对新算法进行全面评估,这可以进一步促进该领域的研究。StreamAD的代码发布在https://github.com/Fengrui-Liu/StreamAD.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StreamAD: A cloud platform metrics-oriented benchmark for unsupervised online anomaly detection

Cloud platforms, serving as fundamental infrastructure, play a significant role in developing modern applications. In recent years, there has been growing interest among researchers in utilizing machine learning algorithms to rapidly detect and diagnose faults within complex cloud platforms, aiming to improve the quality of service and optimize system performance. There is a need for online anomaly detection on cloud platform metrics to provide timely fault alerts. To assist Site Reliability Engineers (SREs) in selecting suitable anomaly detection algorithms based on specific use cases, we introduce a benchmark called StreamAD. This benchmark offers three-fold contributions: (1) it encompasses eleven unsupervised algorithms with open-source code; (2) it abstracts various common operators for online anomaly detection which enhances the efficiency of algorithm development; (3) it provides extensive comparisons of various algorithms using different evaluation methods; With StreamAD, researchers can efficiently conduct comprehensive evaluations for new algorithms, which can further facilitate research in this area. The code of StreamAD is published at https://github.com/Fengrui-Liu/StreamAD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of mechanical properties of natural fiber based polymer composite Could bibliometrics reveal top science and technology achievements and researchers? The case for evaluatology-based science and technology evaluation Table of Contents BinCodex: A comprehensive and multi-level dataset for evaluating binary code similarity detection techniques Analyzing the impact of opportunistic maintenance optimization on manufacturing industries in Bangladesh: An empirical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1