考虑实际接触节理面的岩石节理抗剪强度随空腔百分比变化的物理机制研究

Liren Ban , Zefan Wang , Weisheng Du , Yuhang Hou , Chengzhi Qi , Jin Yu
{"title":"考虑实际接触节理面的岩石节理抗剪强度随空腔百分比变化的物理机制研究","authors":"Liren Ban ,&nbsp;Zefan Wang ,&nbsp;Weisheng Du ,&nbsp;Yuhang Hou ,&nbsp;Chengzhi Qi ,&nbsp;Jin Yu","doi":"10.1016/j.rockmb.2023.100064","DOIUrl":null,"url":null,"abstract":"<div><p>To explain the effect of joint roughness on joint peak shear strength (JPSS) and investigate the effect of different contact states of joint surface on JPSS, we try to clarify the physical mechanism of the effect of joint cavity percentage (JCP) on JPSS from the perspective of the three-dimensional (3D) distribution characteristics of the actual contact joint surface, and propose a JPSS model considering the JCP. Shear tests for red sandstone joints with three different surface morphologies and three different JCPs were performed under constant normal load condition. Based on test fitting results, the reduction effect of the JCP on JPSS is investigated, and a JPSS model for cavity-containing joints is obtained. However, the above model only considers the influence of JCP by fitting test data, and does not reveal the physical mechanism of JCP affecting the JPSS. Based on the peak dilation angle model for consideration of the actual contact joint morphology, and the influence of JCP on the roughness of the actual contact joint surface, a theoretical model of the JPSS considering the JCP is proposed. The derivation process does not depend on the test fitting, but is entirely based on the joint mechanical law, and its physical significance is clear. It is proposed that the essence of the influence of the JCP on JPSS is that the JCP first affects the normal stress of the actual contact joints, further affects the roughness of actual contact joints, and then affects the shear strength.</p></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"2 4","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation on the physical mechanism of cavity percentage dependent shear strength for rock joints considering the real contact joint surface\",\"authors\":\"Liren Ban ,&nbsp;Zefan Wang ,&nbsp;Weisheng Du ,&nbsp;Yuhang Hou ,&nbsp;Chengzhi Qi ,&nbsp;Jin Yu\",\"doi\":\"10.1016/j.rockmb.2023.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To explain the effect of joint roughness on joint peak shear strength (JPSS) and investigate the effect of different contact states of joint surface on JPSS, we try to clarify the physical mechanism of the effect of joint cavity percentage (JCP) on JPSS from the perspective of the three-dimensional (3D) distribution characteristics of the actual contact joint surface, and propose a JPSS model considering the JCP. Shear tests for red sandstone joints with three different surface morphologies and three different JCPs were performed under constant normal load condition. Based on test fitting results, the reduction effect of the JCP on JPSS is investigated, and a JPSS model for cavity-containing joints is obtained. However, the above model only considers the influence of JCP by fitting test data, and does not reveal the physical mechanism of JCP affecting the JPSS. Based on the peak dilation angle model for consideration of the actual contact joint morphology, and the influence of JCP on the roughness of the actual contact joint surface, a theoretical model of the JPSS considering the JCP is proposed. The derivation process does not depend on the test fitting, but is entirely based on the joint mechanical law, and its physical significance is clear. It is proposed that the essence of the influence of the JCP on JPSS is that the JCP first affects the normal stress of the actual contact joints, further affects the roughness of actual contact joints, and then affects the shear strength.</p></div>\",\"PeriodicalId\":101137,\"journal\":{\"name\":\"Rock Mechanics Bulletin\",\"volume\":\"2 4\",\"pages\":\"Article 100064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rock Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773230423000379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230423000379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了解释接头粗糙度对接头峰值剪切强度(JPSS)的影响,并研究接头表面不同接触状态对JPSS的影响,我们试图从实际接触接头表面的三维(3D)分布特征的角度阐明接头空腔百分比(JCP)对JPSS影响的物理机制,并提出了一个考虑JCP的JPSS模型。在恒定法向载荷条件下,对具有三种不同表面形态和三种不同JCP的红砂岩节理进行了剪切试验。基于试验拟合结果,研究了JCP对JPSS的折减作用,得到了含空腔接头的JPSS模型。然而,上述模型仅通过拟合测试数据来考虑JCP的影响,并没有揭示JCP影响JPSS的物理机制。基于考虑实际接触接头形态的峰值膨胀角模型,以及JCP对实际接触接头表面粗糙度的影响,提出了考虑JCP的JPSS理论模型。推导过程不依赖于测试拟合,而是完全基于关节力学定律,其物理意义是明确的。提出JCP对JPSS影响的本质是,JCP首先影响实际接触接头的法向应力,进一步影响实际接触节点的粗糙度,然后影响剪切强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on the physical mechanism of cavity percentage dependent shear strength for rock joints considering the real contact joint surface

To explain the effect of joint roughness on joint peak shear strength (JPSS) and investigate the effect of different contact states of joint surface on JPSS, we try to clarify the physical mechanism of the effect of joint cavity percentage (JCP) on JPSS from the perspective of the three-dimensional (3D) distribution characteristics of the actual contact joint surface, and propose a JPSS model considering the JCP. Shear tests for red sandstone joints with three different surface morphologies and three different JCPs were performed under constant normal load condition. Based on test fitting results, the reduction effect of the JCP on JPSS is investigated, and a JPSS model for cavity-containing joints is obtained. However, the above model only considers the influence of JCP by fitting test data, and does not reveal the physical mechanism of JCP affecting the JPSS. Based on the peak dilation angle model for consideration of the actual contact joint morphology, and the influence of JCP on the roughness of the actual contact joint surface, a theoretical model of the JPSS considering the JCP is proposed. The derivation process does not depend on the test fitting, but is entirely based on the joint mechanical law, and its physical significance is clear. It is proposed that the essence of the influence of the JCP on JPSS is that the JCP first affects the normal stress of the actual contact joints, further affects the roughness of actual contact joints, and then affects the shear strength.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Data-driven machine learning approaches for simultaneous prediction of peak particle velocity and frequency induced by rock blasting in mining Manually directional splitting of in-situ intact igneous rocks into large sheets Finite domain solution of a hydraulic fracture in a permeable rock Dynamic evolution of reservoir permeability and deformation in geothermal battery energy storage using abandoned mines Modeling of particle migration in piping based on an improved discrete element method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1