G. Herrero-García , P. Barroso , L. Preite , D. Relimpio , R. Vaz-Rodrigues , A. Balseiro , C. Gortázar
{"title":"西班牙流行区结核病阳性和阴性肉牛养殖场的水孔特征","authors":"G. Herrero-García , P. Barroso , L. Preite , D. Relimpio , R. Vaz-Rodrigues , A. Balseiro , C. Gortázar","doi":"10.1016/j.rama.2023.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>In dry climates, livestock farming contributes to waterhole creation and maintenance, thereby contributing to biodiversity conservation. However, these lentic water bodies also represent a critical environmental connection between microorganisms and their vertebrate hosts since the water can facilitate pathogen persistence and transmission. Therefore, interventions for tuberculosis (TB) risk mitigation at the wildlife-livestock interface often focus on segregating host species at water points. We hypothesized that waterhole characteristics modulate their use by vertebrates and subsequent pathogen exposure risk. We visited 298 waterholes on 80 TB-positive and 40 TB-negative cattle farms in Spain to assess differences in waterhole characteristics and identify possible management implications. There was an average of 2.7 waterholes per farm. This represents 0.02 waterholes per km<sup>2</sup> of farmland and 3.5 m<sup>2</sup> of lentic waterbodies per km<sup>2</sup> of farmland. Among the studied waterholes, 95% were man-made. Waterholes on TB-positive farms were 42% closer to covering vegetation than waterholes located on TB-negative ones. Farms with man-made waterholes showed a higher risk of TB than those with natural ones. The density of waterholes per surface unit was negatively associated with the farm TB risk. Waterholes placed on TB-positive farms were more intensively trampled by livestock. The best model explained farm positivity to TB as a function of the distance from the waterholes to the nearest cover vegetation, the aquatic vegetation richness found in the waterhole, the intensity of livestock use (trampling), the surrounding waterhole density, and the interaction between waterhole perimeter and the total number of signs of potential wildlife TB hosts per waterhole. Identifying the key waterhole features related to infection risk might allow designing One Health−inspired biosecurity measures such as increasing the number of waterholes, placing new waterholes farther away from cover, or fencing-out cattle from wildlife-rich waterholes to balance biodiversity conservation and animal health needs in extensive grazing systems.</p></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":"92 ","pages":"Pages 50-58"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waterhole Characteristics in Tuberculosis Positive and Negative Beef Cattle Farms from Endemic Regions in Spain\",\"authors\":\"G. Herrero-García , P. Barroso , L. Preite , D. Relimpio , R. Vaz-Rodrigues , A. Balseiro , C. Gortázar\",\"doi\":\"10.1016/j.rama.2023.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In dry climates, livestock farming contributes to waterhole creation and maintenance, thereby contributing to biodiversity conservation. However, these lentic water bodies also represent a critical environmental connection between microorganisms and their vertebrate hosts since the water can facilitate pathogen persistence and transmission. Therefore, interventions for tuberculosis (TB) risk mitigation at the wildlife-livestock interface often focus on segregating host species at water points. We hypothesized that waterhole characteristics modulate their use by vertebrates and subsequent pathogen exposure risk. We visited 298 waterholes on 80 TB-positive and 40 TB-negative cattle farms in Spain to assess differences in waterhole characteristics and identify possible management implications. There was an average of 2.7 waterholes per farm. This represents 0.02 waterholes per km<sup>2</sup> of farmland and 3.5 m<sup>2</sup> of lentic waterbodies per km<sup>2</sup> of farmland. Among the studied waterholes, 95% were man-made. Waterholes on TB-positive farms were 42% closer to covering vegetation than waterholes located on TB-negative ones. Farms with man-made waterholes showed a higher risk of TB than those with natural ones. The density of waterholes per surface unit was negatively associated with the farm TB risk. Waterholes placed on TB-positive farms were more intensively trampled by livestock. The best model explained farm positivity to TB as a function of the distance from the waterholes to the nearest cover vegetation, the aquatic vegetation richness found in the waterhole, the intensity of livestock use (trampling), the surrounding waterhole density, and the interaction between waterhole perimeter and the total number of signs of potential wildlife TB hosts per waterhole. Identifying the key waterhole features related to infection risk might allow designing One Health−inspired biosecurity measures such as increasing the number of waterholes, placing new waterholes farther away from cover, or fencing-out cattle from wildlife-rich waterholes to balance biodiversity conservation and animal health needs in extensive grazing systems.</p></div>\",\"PeriodicalId\":49634,\"journal\":{\"name\":\"Rangeland Ecology & Management\",\"volume\":\"92 \",\"pages\":\"Pages 50-58\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rangeland Ecology & Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1550742423001069\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742423001069","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Waterhole Characteristics in Tuberculosis Positive and Negative Beef Cattle Farms from Endemic Regions in Spain
In dry climates, livestock farming contributes to waterhole creation and maintenance, thereby contributing to biodiversity conservation. However, these lentic water bodies also represent a critical environmental connection between microorganisms and their vertebrate hosts since the water can facilitate pathogen persistence and transmission. Therefore, interventions for tuberculosis (TB) risk mitigation at the wildlife-livestock interface often focus on segregating host species at water points. We hypothesized that waterhole characteristics modulate their use by vertebrates and subsequent pathogen exposure risk. We visited 298 waterholes on 80 TB-positive and 40 TB-negative cattle farms in Spain to assess differences in waterhole characteristics and identify possible management implications. There was an average of 2.7 waterholes per farm. This represents 0.02 waterholes per km2 of farmland and 3.5 m2 of lentic waterbodies per km2 of farmland. Among the studied waterholes, 95% were man-made. Waterholes on TB-positive farms were 42% closer to covering vegetation than waterholes located on TB-negative ones. Farms with man-made waterholes showed a higher risk of TB than those with natural ones. The density of waterholes per surface unit was negatively associated with the farm TB risk. Waterholes placed on TB-positive farms were more intensively trampled by livestock. The best model explained farm positivity to TB as a function of the distance from the waterholes to the nearest cover vegetation, the aquatic vegetation richness found in the waterhole, the intensity of livestock use (trampling), the surrounding waterhole density, and the interaction between waterhole perimeter and the total number of signs of potential wildlife TB hosts per waterhole. Identifying the key waterhole features related to infection risk might allow designing One Health−inspired biosecurity measures such as increasing the number of waterholes, placing new waterholes farther away from cover, or fencing-out cattle from wildlife-rich waterholes to balance biodiversity conservation and animal health needs in extensive grazing systems.
期刊介绍:
Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes.
Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.