催化剂生产线关键工艺参数预测的机器学习数字孪生方法

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers in Industry Pub Date : 2023-10-01 DOI:10.1016/j.compind.2023.103987
Matteo Perno , Lars Hvam , Anders Haug
{"title":"催化剂生产线关键工艺参数预测的机器学习数字孪生方法","authors":"Matteo Perno ,&nbsp;Lars Hvam ,&nbsp;Anders Haug","doi":"10.1016/j.compind.2023.103987","DOIUrl":null,"url":null,"abstract":"<div><p>Digital twins (DTs) are rapidly changing how manufacturing companies leverage the large volumes of data they generate daily to gain a competitive advantage and optimize their supply chains. When coupled with recent developments in machine learning (ML), DTs have the potential to generate invaluable insights for process manufacturing companies to help them optimize their manufacturing processes. However, this potential has yet to be fully exploited due to the challenges that process manufacturing companies face in developing and implementing DTs in their organizations. Although DTs are receiving increasing attention in both industry and academia, there is limited literature on how to apply them in the process industry. To address this gap, this paper presents a framework for developing ML-based DTs to predict critical process parameters in real time. The proposed framework is tested through a case study at an international process manufacturing company in which it was used to collect and process plant data, build accurate predictive models for two critical process parameters, and develop a DT application to visualize the models’ predictions. The case study demonstrated the usefulness of the proposed DT–ML framework in the sense that it provided the company with more accurate predictions than the models it previously applied. The study provides insights into the value of applying ML-based DT in the process industry and sheds light on some of the challenges associated with the application of this technology.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A machine learning digital twin approach for critical process parameter prediction in a catalyst manufacturing line\",\"authors\":\"Matteo Perno ,&nbsp;Lars Hvam ,&nbsp;Anders Haug\",\"doi\":\"10.1016/j.compind.2023.103987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Digital twins (DTs) are rapidly changing how manufacturing companies leverage the large volumes of data they generate daily to gain a competitive advantage and optimize their supply chains. When coupled with recent developments in machine learning (ML), DTs have the potential to generate invaluable insights for process manufacturing companies to help them optimize their manufacturing processes. However, this potential has yet to be fully exploited due to the challenges that process manufacturing companies face in developing and implementing DTs in their organizations. Although DTs are receiving increasing attention in both industry and academia, there is limited literature on how to apply them in the process industry. To address this gap, this paper presents a framework for developing ML-based DTs to predict critical process parameters in real time. The proposed framework is tested through a case study at an international process manufacturing company in which it was used to collect and process plant data, build accurate predictive models for two critical process parameters, and develop a DT application to visualize the models’ predictions. The case study demonstrated the usefulness of the proposed DT–ML framework in the sense that it provided the company with more accurate predictions than the models it previously applied. The study provides insights into the value of applying ML-based DT in the process industry and sheds light on some of the challenges associated with the application of this technology.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361523001379\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361523001379","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

数字双胞胎(DT)正在迅速改变制造公司如何利用他们每天生成的大量数据来获得竞争优势并优化其供应链。结合机器学习(ML)的最新发展,DT有可能为流程制造公司提供宝贵的见解,帮助他们优化制造流程。然而,由于流程制造公司在其组织中开发和实施DT时面临的挑战,这一潜力尚未得到充分利用。尽管DTs在工业界和学术界都受到了越来越多的关注,但关于如何将其应用于加工行业的文献有限。为了解决这一差距,本文提出了一个开发基于ML的DT的框架,以实时预测关键工艺参数。通过一家国际工艺制造公司的案例研究对所提出的框架进行了测试,该框架用于收集和处理工厂数据,为两个关键工艺参数建立准确的预测模型,并开发DT应用程序来可视化模型的预测。案例研究证明了所提出的DT–ML框架的有用性,因为它为公司提供了比以前应用的模型更准确的预测。该研究深入了解了在流程工业中应用基于ML的DT的价值,并揭示了与该技术应用相关的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning digital twin approach for critical process parameter prediction in a catalyst manufacturing line

Digital twins (DTs) are rapidly changing how manufacturing companies leverage the large volumes of data they generate daily to gain a competitive advantage and optimize their supply chains. When coupled with recent developments in machine learning (ML), DTs have the potential to generate invaluable insights for process manufacturing companies to help them optimize their manufacturing processes. However, this potential has yet to be fully exploited due to the challenges that process manufacturing companies face in developing and implementing DTs in their organizations. Although DTs are receiving increasing attention in both industry and academia, there is limited literature on how to apply them in the process industry. To address this gap, this paper presents a framework for developing ML-based DTs to predict critical process parameters in real time. The proposed framework is tested through a case study at an international process manufacturing company in which it was used to collect and process plant data, build accurate predictive models for two critical process parameters, and develop a DT application to visualize the models’ predictions. The case study demonstrated the usefulness of the proposed DT–ML framework in the sense that it provided the company with more accurate predictions than the models it previously applied. The study provides insights into the value of applying ML-based DT in the process industry and sheds light on some of the challenges associated with the application of this technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
期刊最新文献
Rapid quality control for recycled coarse aggregates (RCA) streams: Multi-sensor integration for advanced contaminant detection Apple varieties and growth prediction with time series classification based on deep learning to impact the harvesting decisions Maximum subspace transferability discriminant analysis: A new cross-domain similarity measure for wind-turbine fault transfer diagnosis Dual channel visible graph convolutional neural network for microleakage monitoring of pipeline weld homalographic cracks Video-based automatic people counting for public transport: On-bus versus off-bus deployment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1