{"title":"蛇绿岩、橄榄岩含水层中钻孔水位对大气、固体地球和海洋潮汐的响应","authors":"R.A. Sohn , J.M. Matter","doi":"10.1016/j.hydroa.2023.100163","DOIUrl":null,"url":null,"abstract":"<div><p>Peridotite aquifers are ubiquitous on Earth, but most are in the deep-sea, and thus difficult to access. Ophiolites provide a unique opportunity to study peridotite aquifers, and the Oman Drilling Project established a Multi-Borehole Observatory in a peridotite terrain of the Samail ophiolite. We use the water level response of two 400-m deep boreholes (BA1B, BA1D) to solid Earth, ocean, and atmospheric tides to investigate the hydromechanical structure of the aquifer. The two boreholes are offset by ∼ 100 m but exhibit markedly different tidal responses, indicating a high degree of short-length-scale heterogeneity. Hole BA1B does not respond to tidal strain or barometric loading, consistent with the behavior of an unconfined aquifer. Hole BA1D responds to both tidal strain and barometric loading, indicating some degree of confinement. The response to applied strain, which includes a non-negligible ocean tidal loading component, is consistent with a partially confined, low conductivity aquifer. The response to barometric loading appears to be affected by the complex hydrological structure of the surficial zone and we were not able to fit the observations to within error. Aquifer conductivity estimates for Hole BA1D based on the response to tidal strain are within a factor of ∼ 3 of pumping test estimates.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"21 ","pages":"Article 100163"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The response of borehole water levels in an ophiolitic, peridotite aquifer to atmospheric, solid Earth, and ocean tides\",\"authors\":\"R.A. Sohn , J.M. Matter\",\"doi\":\"10.1016/j.hydroa.2023.100163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Peridotite aquifers are ubiquitous on Earth, but most are in the deep-sea, and thus difficult to access. Ophiolites provide a unique opportunity to study peridotite aquifers, and the Oman Drilling Project established a Multi-Borehole Observatory in a peridotite terrain of the Samail ophiolite. We use the water level response of two 400-m deep boreholes (BA1B, BA1D) to solid Earth, ocean, and atmospheric tides to investigate the hydromechanical structure of the aquifer. The two boreholes are offset by ∼ 100 m but exhibit markedly different tidal responses, indicating a high degree of short-length-scale heterogeneity. Hole BA1B does not respond to tidal strain or barometric loading, consistent with the behavior of an unconfined aquifer. Hole BA1D responds to both tidal strain and barometric loading, indicating some degree of confinement. The response to applied strain, which includes a non-negligible ocean tidal loading component, is consistent with a partially confined, low conductivity aquifer. The response to barometric loading appears to be affected by the complex hydrological structure of the surficial zone and we were not able to fit the observations to within error. Aquifer conductivity estimates for Hole BA1D based on the response to tidal strain are within a factor of ∼ 3 of pumping test estimates.</p></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"21 \",\"pages\":\"Article 100163\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915523000172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915523000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The response of borehole water levels in an ophiolitic, peridotite aquifer to atmospheric, solid Earth, and ocean tides
Peridotite aquifers are ubiquitous on Earth, but most are in the deep-sea, and thus difficult to access. Ophiolites provide a unique opportunity to study peridotite aquifers, and the Oman Drilling Project established a Multi-Borehole Observatory in a peridotite terrain of the Samail ophiolite. We use the water level response of two 400-m deep boreholes (BA1B, BA1D) to solid Earth, ocean, and atmospheric tides to investigate the hydromechanical structure of the aquifer. The two boreholes are offset by ∼ 100 m but exhibit markedly different tidal responses, indicating a high degree of short-length-scale heterogeneity. Hole BA1B does not respond to tidal strain or barometric loading, consistent with the behavior of an unconfined aquifer. Hole BA1D responds to both tidal strain and barometric loading, indicating some degree of confinement. The response to applied strain, which includes a non-negligible ocean tidal loading component, is consistent with a partially confined, low conductivity aquifer. The response to barometric loading appears to be affected by the complex hydrological structure of the surficial zone and we were not able to fit the observations to within error. Aquifer conductivity estimates for Hole BA1D based on the response to tidal strain are within a factor of ∼ 3 of pumping test estimates.