{"title":"LASSO主成分平均:一种全自动的点预测池化方法","authors":"Bartosz Uniejewski, Katarzyna Maciejowska","doi":"10.1016/j.ijforecast.2022.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops a novel, fully automated forecast averaging scheme which combines LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers’ ad hoc decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with an out-of-sample period of almost two and a half years and compared to other semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of the mean absolute error, remaining insensitive to the choice of a tuning parameter.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LASSO principal component averaging: A fully automated approach for point forecast pooling\",\"authors\":\"Bartosz Uniejewski, Katarzyna Maciejowska\",\"doi\":\"10.1016/j.ijforecast.2022.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper develops a novel, fully automated forecast averaging scheme which combines LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers’ ad hoc decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with an out-of-sample period of almost two and a half years and compared to other semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of the mean absolute error, remaining insensitive to the choice of a tuning parameter.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207022001352\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001352","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
LASSO principal component averaging: A fully automated approach for point forecast pooling
This paper develops a novel, fully automated forecast averaging scheme which combines LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers’ ad hoc decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with an out-of-sample period of almost two and a half years and compared to other semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of the mean absolute error, remaining insensitive to the choice of a tuning parameter.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.