LASSO主成分平均:一种全自动的点预测池化方法

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-10-01 DOI:10.1016/j.ijforecast.2022.09.004
Bartosz Uniejewski, Katarzyna Maciejowska
{"title":"LASSO主成分平均:一种全自动的点预测池化方法","authors":"Bartosz Uniejewski,&nbsp;Katarzyna Maciejowska","doi":"10.1016/j.ijforecast.2022.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops a novel, fully automated forecast averaging scheme which combines LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers’ ad hoc decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with an out-of-sample period of almost two and a half years and compared to other semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of the mean absolute error, remaining insensitive to the choice of a tuning parameter.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LASSO principal component averaging: A fully automated approach for point forecast pooling\",\"authors\":\"Bartosz Uniejewski,&nbsp;Katarzyna Maciejowska\",\"doi\":\"10.1016/j.ijforecast.2022.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper develops a novel, fully automated forecast averaging scheme which combines LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers’ ad hoc decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with an out-of-sample period of almost two and a half years and compared to other semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of the mean absolute error, remaining insensitive to the choice of a tuning parameter.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207022001352\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001352","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的、全自动的预测平均方案,该方案将LASSO估计与主成分平均(PCA)相结合。LASSO-PCA(LPCA)探索了一个基于单个模型但校准到不同大小窗口的预测库。它使用信息标准来选择调整参数,从而减少了研究人员临时决策的影响。该方法适用于通过不同长度的校准窗口获得的650点预测的每小时日电价的平均预测。它在四个欧洲和美国市场上进行了评估,样本外周期近两年半,并与其他半自动和全自动方法进行了比较,如简单平均值、AW/WAW、LASSO和PCA。结果表明,LASSO平均在减少预测误差方面是非常有效的,而PCA对规范参数的选择是鲁棒的。LPCA继承了这两种方法的优点,在平均绝对误差方面优于其他方法,对调谐参数的选择仍然不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LASSO principal component averaging: A fully automated approach for point forecast pooling

This paper develops a novel, fully automated forecast averaging scheme which combines LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores a pool of predictions based on a single model but calibrated to windows of different sizes. It uses information criteria to select tuning parameters and hence reduces the impact of researchers’ ad hoc decisions. The method is applied to average predictions of hourly day-ahead electricity prices over 650 point forecasts obtained with various lengths of calibration windows. It is evaluated on four European and American markets with an out-of-sample period of almost two and a half years and compared to other semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error reduction, whereas PCA is robust to the selection of the specification parameter. LPCA inherits the advantages of both methods and outperforms other approaches in terms of the mean absolute error, remaining insensitive to the choice of a tuning parameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1