Zeshi Liu , Zhen Xie , Wenqian Dong , Mengting Yuan , Haihang You , Dong Li
{"title":"一种加速量子化学模拟的内存异构处理方法","authors":"Zeshi Liu , Zhen Xie , Wenqian Dong , Mengting Yuan , Haihang You , Dong Li","doi":"10.1016/j.parco.2023.103017","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The “memory wall” is an architectural property introducing high memory access latency that can manifest application performance, and this wall becomes even taller in the context of big data. Although the use of GPU-based systems could achieve high performance, it is difficult to improve the utilization of </span>GPU<span> systems due to the “memory wall”. The intensive data exchange and computation remains a challenge when confronting applications with a massive memory footprint<span>. Quantum-mechanics-based ab initio calculations, which leverage high-performance computing to investigate multi-electron systems, have been widely used in computational chemistry. However, ab initio calculations are labor-intensive and can easily consume more than hundreds of gigabytes of memory. Previous efforts on heterogeneous accelerators via GPU and CPU suffer from high-latency off-device memory access. In this paper, we introduce heterogeneous processing-in-memory (PIM) to mitigate the overhead of data movement between CPUs and GPUs, and deeply analyze two of the most memory-intensive parts of the quantum chemistry, for example, the FFT<span> and time-consuming loops. Specifically, we exploit runtime systems and programming models to improve hardware utilization and simplify programming efforts by moving computation close to the data and eliminating hardware idling. We take a widely used software, the QUANTUM ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), to perform our experiments, and our results show that our design provides up to </span></span></span></span><span><math><mrow><mn>4</mn><mo>.</mo><mn>09</mn><mo>×</mo></mrow></math></span> and <span><math><mrow><mn>2</mn><mo>.</mo><mn>60</mn><mo>×</mo></mrow></math></span> of performance improvement and 71% and 88% energy reduction over CPU and GPU (NVIDIA P100), respectively.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"116 ","pages":"Article 103017"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A heterogeneous processing-in-memory approach to accelerate quantum chemistry simulation\",\"authors\":\"Zeshi Liu , Zhen Xie , Wenqian Dong , Mengting Yuan , Haihang You , Dong Li\",\"doi\":\"10.1016/j.parco.2023.103017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The “memory wall” is an architectural property introducing high memory access latency that can manifest application performance, and this wall becomes even taller in the context of big data. Although the use of GPU-based systems could achieve high performance, it is difficult to improve the utilization of </span>GPU<span> systems due to the “memory wall”. The intensive data exchange and computation remains a challenge when confronting applications with a massive memory footprint<span>. Quantum-mechanics-based ab initio calculations, which leverage high-performance computing to investigate multi-electron systems, have been widely used in computational chemistry. However, ab initio calculations are labor-intensive and can easily consume more than hundreds of gigabytes of memory. Previous efforts on heterogeneous accelerators via GPU and CPU suffer from high-latency off-device memory access. In this paper, we introduce heterogeneous processing-in-memory (PIM) to mitigate the overhead of data movement between CPUs and GPUs, and deeply analyze two of the most memory-intensive parts of the quantum chemistry, for example, the FFT<span> and time-consuming loops. Specifically, we exploit runtime systems and programming models to improve hardware utilization and simplify programming efforts by moving computation close to the data and eliminating hardware idling. We take a widely used software, the QUANTUM ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), to perform our experiments, and our results show that our design provides up to </span></span></span></span><span><math><mrow><mn>4</mn><mo>.</mo><mn>09</mn><mo>×</mo></mrow></math></span> and <span><math><mrow><mn>2</mn><mo>.</mo><mn>60</mn><mo>×</mo></mrow></math></span> of performance improvement and 71% and 88% energy reduction over CPU and GPU (NVIDIA P100), respectively.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"116 \",\"pages\":\"Article 103017\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819123000236\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000236","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A heterogeneous processing-in-memory approach to accelerate quantum chemistry simulation
The “memory wall” is an architectural property introducing high memory access latency that can manifest application performance, and this wall becomes even taller in the context of big data. Although the use of GPU-based systems could achieve high performance, it is difficult to improve the utilization of GPU systems due to the “memory wall”. The intensive data exchange and computation remains a challenge when confronting applications with a massive memory footprint. Quantum-mechanics-based ab initio calculations, which leverage high-performance computing to investigate multi-electron systems, have been widely used in computational chemistry. However, ab initio calculations are labor-intensive and can easily consume more than hundreds of gigabytes of memory. Previous efforts on heterogeneous accelerators via GPU and CPU suffer from high-latency off-device memory access. In this paper, we introduce heterogeneous processing-in-memory (PIM) to mitigate the overhead of data movement between CPUs and GPUs, and deeply analyze two of the most memory-intensive parts of the quantum chemistry, for example, the FFT and time-consuming loops. Specifically, we exploit runtime systems and programming models to improve hardware utilization and simplify programming efforts by moving computation close to the data and eliminating hardware idling. We take a widely used software, the QUANTUM ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), to perform our experiments, and our results show that our design provides up to and of performance improvement and 71% and 88% energy reduction over CPU and GPU (NVIDIA P100), respectively.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications